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According to the Operations Research Society of America, “Operations
research is concerned with scientifically deciding how to best design and
operate man-machine systems, usually under conditions requiring the alloca-
tion of scarce resources.” This publication is the first in a series describing
operations research (OR) techniques that can help forest products managers
solve complex problems. It will introduce basic concepts of models and
probability.

Models
No matter how OR is defined, the construction and use of models is at its

core. Models are representations of real systems. They can be iconic (made
to look like the real system), abstract, or somewhere in between.

Iconic models can be full-scale, scaled-down, or scaled-up in size. Saw-
mill headrig control simulators are full-scale models. A model of the solar
system is a scaled-down model, and a teaching model of a wood cell or a
water molecule is a scaled-up model. Models can be made of the same
material as the system they represent, such as the headrig control simulator,
or they can be made of different materials, such as a plastic model of the
solar system.

On the other end of the model spectrum are abstract mathematical models
(Figure 1). OR professionals often use mathematical models to make simpli-
fied representations of complex systems.

Regardless of the type of model used, modeling includes the following
steps:

1. Defining the problem and gathering data
2. Constructing a model of the system
3. Deriving a solution
4. Testing the model and solution (Is the model valid; that is, does it do what

it is designed to do?)
5. Implementing the solution

PERFORMANCE EXCELLENCE
IN THE WOOD PRODUCTS INDUSTRY
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Figure 1.—Models range from physical to abstract (Source: Shannon, R.E. Systems
Simulation: The Art and Science).
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Why use models?
Why not experiment with the actual system? If the actual system

is simple enough to manipulate safely, then OR techniques often
are not necessary. For example, managers of a sawmill might wish
to extend the hours for loading trucks from 5:00 p.m. until mid-
night. Since the shipping shed is adjacent to the planer mill, they
decide to use the planer mill employees and possibly one or two
overtime employees from shipping to extend the loading hours for
a trial period of 2 to 3 weeks. At the end of this time, they’ll have a
good idea of how the extended shipping hours affected the rest of
the sawmill operations.

An OR professional also could model this problem, perhaps
using a scheduling linear program or a simulation model to exam-
ine the effect of extending the shipping hours. However, if the real
system can be manipulated without causing too much disruption, it
would be preferable to do so rather than to have an OR profes-
sional model it. Often, it can take weeks or months just to collect
enough data to realistically model a system. In this case, it prob-
ably would be less expensive to manipulate the real system.

In other cases, manipulating the real system is neither simpler
nor less expensive than building a model. For example, very long
time periods may be involved, or management may wish to exam-
ine substitutes for the real system. Also, real systems often are too
complex to experiment with directly. The actual experimentation
may be infeasible, disruptive, or too expensive. There are several
ways to study a system without experimenting with the real system
(Figure 2).

Why use models?
• Real systems may

be too complex.
• Models may be

less expensive.
• Models can test

options without
disrupting the real
system.

• Modeling provides
new insights into
the real system.
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Ways to study a system

Figure 2.—Operations research experts can study actual systems, but usually use models instead (Source: Law,
A.M., and W.D. Kelton. Simulation Modeling and Analysis).

System

Experiment with a
model of the system

Mathematical
model

Analytical
solution Simulation

Physical
model

Experiment with
actual system

For example, meteorologists build models to study the weather
because they can’t experiment with the weather itself. One prob-
lem is repeatability. It’s impossible to set up repeatable experi-
ments with systems over which the researcher has no control, such
as the weather. Meteorologists can observe but not test the system.
With a model, however, they can test their theories. They can run
the model under different conditions and observe the weather to
see whether the model is a good enough (although simplified)
representation of the real system. Using the same methods, an
experiment using the model is repeatable.

In the context of forest products manufacturing, a moulding and
millwork manufacturer may want to expand. Management wishes
to see whether it would be cost-effective to build an addition with
new computer numerically controlled (CNC) equipment adjacent
to the existing facility. The manufacturer is unlikely to build the
addition, purchase new CNC equipment, run the operation for a
year, and then decide whether to keep the addition based on this
experiment. It would be too expensive and probably would disrupt
the current manufacturing operation. A simulation of the addition
with new equipment, including details of how it would interact
with the established manufacturing facility, would allow the owner
to test how the new facility would work. He or she could run a test
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of different periods of time (e.g., months or years) to examine the
impact of the new facility on the entire operation.

Other uses for models are for instruction and training, such as a
sawmill headrig simulator or NASA’s full-scale mockup of space
vehicles for astronaut training.

An important, but often overlooked, benefit to modeling is the
insight one gets from the process. Often, modelers learn a lot about
a system during problem definition and data gathering. An experi-
menter must organize his or her thoughts to model a system
successfully, and this thought process often reveals previously
overlooked insights. Information gained from these new insights
can lead to problem resolution even before the model is completed.

Since modeÑs are simàlified representations of real systems, they
can’t be proven. It’s unlikely that two OR professionals working
on the same problem independently would create the same model.
If the problem involved the use of simulation, one modeler might
write a program using Fortran, another might use Basic, and
another might use an off-the-shelf simulation language. However,
one model might be just as good as the other. The usefulness of
any model depends on how well it addresses the problem.

Modeling can be seen as an “art” as much as a science.
Ravindran et al. (1987) contrast the scientific method with the
modeling process. Using the scientific method, one makes observa-
tions, develops a hypothesis, experimentally tests the hypothesis,
and revises and retests it if necessary until a verified hypothesis or
theory is obtained. Unlike models, theories are testable and inde-
pendently verifiable. Theories are discovered, while models are
invented.

An important step in model creation is validation. A model is
valid if it does what it was intended to do. The model creator may
believe the model is valid, while other users may not. Thus, valida-
tion is not as rigid a term as verification or proof and is somewhat
subjective.
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Good models are:
• As simple as pos-

sible
• Easy to understand
• Relevant to the

problem
• Easy to modify and

update

What makes a good model?
A simple model is better than a complex one as long as it works

as well. A model only needs to perform its intended function to be
valid. A model should be easy to understand.

It’s important to use the most relevant OR tool when construct-
ing a model. A modeler should not try to shape the problem to fit a
particular OR method. For example, a linear programming (LP)
expert may try to use LP on a problem where there is no optimal
solution. Instead, modelers should study the problem and choose
the most appropriate OR tool.

For complicated systems, users need to remember that models
are only simplified representations. If a user mistakenly considers a
complicated model to be correct, he or she may disregard further
study of the real system. Modelers and users of models never
should rely only on a model’s output and ignore the real system
being modeled.

A good model should be easy to modify and update. New infor-
mation from the real system can be incorporated easily into a well-
planned model. A good model usually starts out simple and
becomes more complex as the modeler attempts to expand it
enough to give meaningful answers.

Probability theory
The relationship between models and probability

Models can be deterministic or stochastic. A deterministic model
contains no random (probabilistic) components. The output is
determined once the set of input quantities and relationships in the
model have been specified. Stochastic models, on the other hand,
have one or more random input components. For this kind of
model, probability and statistics are important, because we use
them to measure uncertainty. Many, if not most, OR models are
stochastic.

Probability provides the basis for all statistical inference by
allowing the experimenter to assess the chance of various out-
comes. It is fundamental in analyzing decision-making problems
involving incomplete information. In other publications in this
series, you’ll be introduced to simulation and decision theory. Both
of these OR tools depend heavily on probability theory. A brief
review of probability theory will help you to better understand how
these OR techniques operate.

? ??
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What is probability?
The probability of an event is the relative frequency at which it

occurs when the identical situation is repeated a large number of
times (Equation 1).

Eq. 1  Probability (Pr) of an event =       Number of times the event occurs
Number of times the situation is repeated

It’s easy to calculate the probability of an event if all possible
outcomes are known (Equation 2).

Eq. 2   Pr of an event =     Number of times the event can occur
Total number of all events that can occur

For example, the probability of a head occurring when tossing a
two-sided coin is:

Pr of a head = 1/2
(There are only two possible outcomes for every toss.)

Or, the probability of getting an even-numbered side when toss-
ing a six-sided die is:

Pr of even-numbered side = 3/6 or 1/2
(Three of the six sides are even numbered.)

Other examples:
Pr of drawing a club from a deck of cards = 13/52 or 1/4
(There are 13 clubs out of 52 cards.)

Pr of drawing a face card = 12/52 or 3/13
(There are 12 face cards out of 52 cards.)

Sometimes, however, not all events that can occur are known. In
this case, an experiment can be conducted to estimate the probabil-
ity of the event. As the numerator (top number in the equation) and
denominator (bottom number) get sufficiently large, an experiment
will come close to the true probability of the event.

A probability always is between 0 and 1 because the numerator
can be neither negative nor larger than the denominator.
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Probabilities for compound events
Compound events refer to situations where multiple events can

occur. You may want to consider the probability of more than one
of them occurring.

Addition laws
Addition laws are used to assess the probability that any of a set

of possible events will occur (e.g., A or B or C). The simplest form
is the addition law for mutually exclusive events (events that cannot
occur simultaneously), which is given in Equation 3.

Eq. 3   Pr [A or B or C] = Pr[A] + Pr[B] + Pr[C]

For example, suppose the number of logs that can be sawn on a
sawmill headrig during the first hour of mill operation ranges from
0 (the mill is down for some reason) to 250 (the best the mill has
ever done). By observation and collection of a large amount of
data, the following estimations for probabilities of sawing logs in
the first hour were calculated (Table 1).

Table 1.—Probabilities of sawing logs in the first hour.

Number of logs sawn during
first hour of operation Probability

0 (mill down) 0.1
1–50 0.05
51–100 0.1
101–150 0.3
151–200 0.43
201–250 0.02

Pr of sawing at least 101 logs =  Pr[101–150] + Pr[151–200] + Pr[201–250]

=  0.3 + 0.43 + 0.02 = 0.75

Pr of not sawing at least 101 logs = Pr[0] + Pr[1–50] + Pr[51–100]

= 0.1 + 0.05 + 0.1 = 0.25

Pr of sawing at least 101 or not sawing at least 101 logs = 0.75 + 0.25

= 1.0

Addition laws. . .

“The probability that
any of a set of
possible events will
occur.”
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When events are not mutually exclusive, joint probability (the
probability that both events might occur simultaneously) must be
subtracted from the sum of the probabilities that each individual
event will occur to avoid double counting of possibilities
(Equation 4).

Eq. 4   Pr[A or B] = Pr[A] + Pr[B] - Pr[A and B]

For example, for a deck of cards, Pr of drawing an ace is 4⁄52

(there are 4 aces out of 52 cards), and Pr of drawing a heart is 13⁄52

(there are 13 hearts out of 52 cards). The probability of drawing an
ace of hearts is 1⁄52 (there is only one ace of hearts in a deck). Thus,
the probability of drawing an ace or a heart is:

Pr[ace or heart] = Pr[ace] + Pr[heart] - Pr[ace + heart]

= 4/52 + 13/52 - 1/52

= 16/52

Multiplication law for independent events
Multiplication laws are used to look at the probability that more

than one of a set of possible events will occur (e.g., both A and B).
The simplest multiplication law applies to situations where the
events operate independently, that is, they don’t have any effect on
each other (Equation 5). An example is the probability of drawing
an ace of hearts.

Eq. 5   Pr[A and B] = Pr[A] x Pr[B]

For a deck of cards:
Pr[ace and heart] = Pr[ace] x Pr[heart]

= 4/52 x 13/52

= 1/52

Let’s say a contractor wishes to order lumber from a wholesale
lumber supplier. The supplier has three phone lines (three different
numbers that operate independently of each other). The probability
of phone 1 being busy is 0.80, the probability of phone 2 being
busy is 0.80, and the probability of phone 3 being busy is 0.80. The
contractor calls to order 50 thousand board feet (MBF) of pine.
What is the probability that the phone lines will be busy?

Pr[phone 1 and 2 busy] = Pr[phone 1 busy] x Pr[phone 2 busy]

= 0.80 x 0.80 = 0.64

Multiplication laws. . .

“The probability that
more than one of a set
of possible events will
occur.”
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Pr[phone 1, 2, and 3 busy] = Pr[1 busy] x Pr[2 busy] x Pr[3 busy]

= 0.80 x 0.80 x 0.80

= 0.512

Pr of getting through (at least one phone line not busy) = 1 - Pr[all busy]

= 1 - 0.512

= 0.488

Joint probability
Joint probability refers to obtaining probabilities when several

events can occur simultaneously. Let’s say we’re going to choose a
student, by lottery, from a group of 200 equally gifted students. We
want to know the chances of choosing a particular student type
based on four demographic characteristics. The demographics of
the students are illustrated in a joint probability table (Table 2),
which allows you to calculate the probability of simultaneously
occurring events.

Table 2.—Joint probability table of gifted students.

Caucasian (c) Minority (m) Total

Male (ma) 55 40 95
Female (f) 65 40 105
Total 120 80 200

Probability of choosing a Caucasian male:
Pr[ma and c] = 55/200 = 0.275

Probability of choosing a minority male:
Pr[ma and m] = 40/200 = 0.20

Probability of choosing a Caucasian female:
Pr[f and c] = 65/200 = 0.325

Probability of choosing a minority female:
Pr[f and m] = 40/200 = 0.20

Probability of choosing a Caucasian:
Pr[c] = 120/200 = 0.60

Probability of choosing a minority is:
Pr[m] = 80/200 = 0.40

Joint probability. . .

“The probability of
several events occur-
ring simultaneously.”
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Conditional probability
The occurrence of one event can affect the probability of another

event. Probability values obtained under the stipulation that some
events have occurred or will occur are conditional probabilities.
We can compute conditional probability from joint probability.

The conditional probability of A given B is the proportion of
times that A occurs out of all the times that B occurs (Equation 6).
Note that in conditional equations the vertical bar (|) is the symbol
for “given.”

Eq. 6   Pr[A | B] =  Pr[A and B]
      Pr[B]

Similarly:

Pr[B | A] =  Pr[A and B]
     Pr[A]

Referring to our student example above, the conditional prob-
ability that the student chosen is a male, given he is a minority, is:

Pr[ma | m] = Pr[ma and m] = 0.2 = 0.5
       Pr[m]           0.4

What is the probability that the first person selected is a male
(ma

1
), the second person selected is a male (ma

2
), and the third

person selected is a male (ma
3
)?

Pr[ma
1
 and ma

2
 and ma

3
] = Pr[ma

1
] x Pr[ma

2
 | ma

1
] x Pr [ma

3
 | ma

1
 and ma

2
]

So:

Pr[ma
1
] = 95/200

Pr[ma
2
 | ma

1
] = 94/199

(If [ma
1
] happens, there will be 94 males left out of 199 students.)

Pr[ma
3
 | ma

1
 and ma

2
] = 93/198

(If [ma
1
] and [ma

2
] happen, there will be 93 males remaining out of 198

students.)

Therefore, the probability of choosing 3 males is:
Pr[ma

1
 and ma

2
 and ma

3
] = (95/200) x (94/199) x (93/198)

= (0.475) x (0.472) x (0.470)

= 0.105

Conditional
probability. . .

“The probability that an
event will occur given
that some other event
has occurred.”
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Independent events
Events are independent (the probability of one event is unaf-

fected by the occurrence of the other) when their conditional
probabilities equal their respective unconditional probabilities.
Let’s determine whether the events [king] and [face] in a deck of
cards are independent:

Unconditional probability: Pr[king] = 4/52 = 1/13

Conditional probability: Pr[king | face card] = Pr[king and face]
       Pr[face]

=  4/52
12/52

=  4/12

=  1/3

The conditional probability does not equal the unconditional
probability, so the events are not independent.

On the other hand, the events ace and heart are independent.  To
illustrate this:

Unconditional probability: Pr[ace] = 4/52 = 1/13

Conditional probability: Pr[ace | heart] =  1/52  = 1/13
13/52

In this case, the conditional probability and the unconditional
probability are equal, so the events are independent.

Multiplication law for events that are not independent
To find the probability of the joint occurrence of two or more

events, you usually use the multiplication law. On page 8, we
discussed the multiplication law for independent events.
Equation 7 is the multiplication law for events that are not inde-
pendent.

Eq. 7  Pr[A and B] = Pr[A] x Pr[B | A]

Pr[ace and club] = Pr[ace] x Pr[club | ace]

= Pr[ace] x Pr[club and ace]
               Pr[ace]

= 4/52 x 1/52
      4/52

= 1/13 x 1/4

= 1/52

Independent events. . .

“Events whose prob-
abilities are not
affected by the occur-
rence of each other.”
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Probability trees
In Table 2, we used a joint probability table for determining the

probability of choosing a particular student type. Joint probability
tables can get awkward when dealing with more than two events. A
probability tree is one way to deal with this situation.

From our student demographic example, if we look only at
determining the probability of choosing a male the first time (ma

1
),

second time (ma
2
), and third time (ma

3
), that is, Pr[ma

1
 and ma

2

and ma
3
], we can use a probability tree to calculate the probability.

We set up marginal probabilities for the first branches, that is,
Pr[ma] = 95⁄200 and Pr[f] = 105⁄200. (The sum of these branches must
equal 1). At the tip of each of these branches, we construct
branches for another set of probabilities using conditional prob-
abilities based on the first branch. Since there is a third event,
another set of branches using conditional probabilities is con-
structed. The probability of each path is found by multiplying the
probabilities along each path. Note that the sum of probabilities for
each set of branches must equal 1. Referring to Figure 3:

Pr[ma
1
 and ma

2
 and ma

3
] = (95/200) x (94/199) x (93/198)

= 0.475 x 0.472 x 0.470

= 0.105

You can see that this result is the same as the one we calculated
on page 10.

Figure 3.—Probability tree for a random sample of 3 students without
replacement from a population of 200 students.
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As another example, consider a quality control sampling scheme
at a computer numerically controlled (CNC) router manufacturer.
Five out of 100 parts from a vendor are defective, but this fact is
unknown to the quality control supervisor, who must decide
whether to accept or reject a shipment based on a sample of 3
items chosen at random. Let G = good item and D = defective
item. The outcome of each of the three sample observations can be
represented by a branch. Since one of two complementary (G or D)
events can occur for each item observed, there are two branches for
each item (Figure 4).

The results of each selection are not independent because each
item is not replaced in the shipment after it is inspected. Therefore,
the makeup of the remainder of the shipment changes each time. If
D

1
 occurs, that is, the first sample item is defective, only 4 of the

remaining 99 items can be defective, and the probability that the
second item is defective is 4⁄99. On the other hand, if G

1
 occurs as

the first event, then the probability that D
2
 occurs is 5⁄99. These

values are conditional probabilities because the outcome of the
second sample depends on the outcome of the first sample and so
on.

The joint probabilities for each event can be found by multiply-
ing the probabilities for the branches on the path leading to a

Figure 4.—Probability tree for selecting a random sample of 3 items without
replacement from a population of size 100 (Source: Lapin, L.L. Quantitative
Methods for Business Decisions with Cases).



14

OPERATIONS RESEARCH

particular outcome. The probability that all three items in the sample
are defective is:

Pr[D
1
+ D

2
 + D

3
] = Pr[D

1
] x Pr[D

2
 | D

1
] x Pr[D

3
 | D

1
 and D

2
]

= 5/100 x 4/99 x 3/98

= 0.0000618

The probability that all three items in the sample are good is:
Pr[G

1
 + G

2
 + G

3
] = 95/100 x 94/99 x 93/98

= 0.8559988

All other joint probabilities for each of the possible combinations
of three samples are calculated in the same manner.

Based on the above calculations, there is a high probability that
the shipment will be accepted. If it is important to reject a shipment
(for example, if management will tolerate no more than 1 percent
defect), then another sampling scheme should be used.

Let’s consider the same problem from the viewpoint of the manu-
facturer. The quality control supervisor wishes to use sample data to
determine whether plant machinery should be adjusted. Unknown to
the supervisor, defects occur 5 percent of the time. A probability tree
can be constructed for three randomly selected samples of separate
items from the production line (Figure 5).

Figure 5.—Probability tree for a random sample of three items from a
production process (Source: Lapin, L.L. Quantitative Methods for Business
Decisions with Cases).
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The successive events for any tree path are independent because
errors in the process are assumed to be erratic (random). The
occurrence of a defect does not influence the occurrence of a
defect in the future. The conditional and unconditional probabili-
ties are equal. The probability that all of the samples will be defec-
tive is:

Pr[D
1
 + D

2
 + D

3
] = Pr[D

1
] x Pr[D

2
] x Pr[D

3
]

= 0.05 x 0.05 x 0.05

= 0.000125

The probability that all of the samples will be good is:
Pr[G

1
 + G

2
 + G

3
] = 0.95 x 0.95 x 0.95

= 0.857375

Figure 4 represents sampling without replacement from a small
population where successive events are dependent. Figure 5 repre-
sents sampling without replacement from a population of unlimited
size. Figure 5 also could be used for a small population when
sampling with replacements.

Baye’s Theorem
Baye’s Theorem is a procedure used to revise probabilities based

on new empirical information. Probabilities can be revised upward
or downward based on the new information. The probability of an
event as calculated before doing an empirical study is known as the
prior probability. For example, let’s say prior possibilities of
events “E” and “not E” are known. An investigation results in
several possible outcomes, each statistically dependent on E. For
any particular result (R), the conditional probabilities Pr[R | E] and
Pr[R | not E] often are available. Based on the results, Pr[E] and
Pr[not E] can be revised upward or downward according to Baye’s
Theorem (Equation 8). The revised probability is known as a
posterior probability, which is defined as a conditional probability
of the form Pr[E | R], Pr[not E | R].

Eq. 8  Pr[E | R] =                        Pr[E] x Pr[R | E]
(Pr[E] x Pr[R | E])  + (Pr[not E] x Pr[R | not E])

As an example, a box contains four fair dice and one weighted
die that makes the 6 appear two-thirds of the time. If you can’t tell
the weighted die from the others and you roll a 6, what is the
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probability that you tossed the weighted die? Let “E” = weighted
die and “not E” = fair die. The empirical information R = the fact
that you rolled a six. Prior probabilities are:

Pr[E] = 1/5 (1 weighted die)

Pr[not E] = 4/5 (4 fair dice)

You know that when the weighted die is tossed, the probability
of rolling a six is:

Pr[R | E] = 2/3

If a nonweighted die is tossed, the probability of a six is:
Pr[R | not E] = 1/6

Using Baye’s Theorem, you can calculate the posterior probabil-
ity that you rolled the weighted die, given that you rolled a six:

Pr[E | R] =                          Pr[E] x Pr[R | E]
(Pr[E] x Pr[R | E])  + (Pr[not E] x Pr[R | not E])

=                1/5 x 2/3
(1/5 x 2/3) + (4/5 x 1/6)

=         2/15
2/15 + 4/30

=    2/15
4/15

=   1/2

Thus, the probability of tossing the weighted die was revised
upward from the prior value of 1⁄5, with no information, to the
posterior value of 1⁄2, with the information that a 6 was tossed.

Let’s look at another example. A wholesale lumber supplier
classifies its clients as small, medium, and large depending on how
much lumber they purchase on a monthly basis. Overall, 55 per-
cent are small, 35 percent are medium, and 10 percent are large. A
new customer is not categorized until after 18 months of doing
business with the wholesaler. Management wants to do different
amounts of advertising based on each customer’s size category and
wishes to know whether new customers can be classified after only
3 months of business. Based on company records, 3-month histo-
ries for each category were obtained (Table 3).
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Table 3.—Percent purchased by clients based on 3 months of purchases.

    Percent
First 3 months Small Medium Large
purchases (sm) (med) (L)

<1 MBF 60 15 5
1 MBF–5 MBF 20 45 20
>5 MBF 20 40 75

Figure 6.—Partial probability tree depicting size of customer based on amount
purchased over a 3-month period (<1 MBF branches).

If a customer purchases less than 1 MBF in the first 3 months,
what is the probability that the customer fits in the small category?

Pr[sm | <1MBF] =                                           Pr[sm] x Pr[<1 MBF | sm]
(Pr[sm] x Pr[<1 MBF | sm]) + (Pr[med] x Pr[<1 MBF | med]) + (Pr[L] x Pr[<1 MBF | L])

= 0.55 x 0.60
(0.55 x 0.60) + (0.35 x 0.15) + (0.10 x 0.05)

=  0.33
0.388

=  0.85

The same information can be found using a probability tree
(Figure 6):

Pr[sm | <1 MBF] =  P[sm and <1MBF]
     Pr[<1 MBF]

=                0.33
0.005 + 0.330 + 0.0525

=  0.85

Size of customer

Purchases

Large .10

Medium .35

Small .55



18

OPERATIONS RESEARCH

From the above examples, you can see that it sometimes is
easier to solve probability problems by building probability tables
or probability trees.

Other publications in this series will expand on the information
on modeling and probability theory reviewed in this publication.
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