Honey Bee Biology and Health
Clackamas Tree School 2016

Dan Wyns

OSU Honey Bee Lab
• Dr. Ramesh Sagili

• Research, Extension, Education, Demonstrations, Field Days . . .
• Bee Informed Partnership

http://honeybeelab.oregonstate.edu/

Natural Resource Management: University of Michigan
Commercial Beekeeper: Western Canada 2013
Oregon State University: 2014–Present

Overview
• Honey Bee Biology and Behavior
• Threats to Honey Bee Health
• The Importance of Honey Bees
• Bee Friendly Practices

??? . . . Yes, Yes, and Yes but you get used to it
What is a Honey Bee?

- **Kingdom** – Animalia
- **Phylum** – Arthropoda
 - **Class** – Insecta
 - **Order** – Hymenoptera
 - **Family** – Apidae
 - **Genus** – Apis
 - **Species** – *Apis mellifera*

Apis mellifera = ‘Honey Bearing Bee’
Species of Honey Bees (*Apis spp.*)
All species of Honey Bees originate in the ‘Old World’
- Giant Honey Bee (*A. dorsata*)
- Asian Honey Bee (*A. cerana*)
- European Honey Bee (*A. mellifera*)

Native range of ‘European’ Honey Bee
20+ distinct races of *A. mellifera* with different physical and behavioral traits
- Productivity
- Brood Rearing
- Temperament
- ‘Swarminess’
- Wintering size
- Disease resistance

Imported to America in 1600s

A. m. Lingustica – Italians
- Yellow with prominent stripes
- Docile behavior
- Large wintering population
- Extensive brood rearing
- Prolific honey producers

A. m. Carnica – Carniolans
- Black or Ashy Grey
- Very Gentle
- More dynamic population
- Early buildup – ‘Swarmy’
- Good honey producers
- Exceptional pollen collection

‘Africanized’ bees-- *A.m. scutellata*
Native to tropical East Africa
26 research colonies, Brazil 1957
Rapid spread through S. + C. America
Present today in southern states

Highly Defensive!!!
Frequent Swarming
Dominant Genetics – Queen Breeding
Changes in Beekeeping Practices
Honey bees are an incredibly complex organism with high specialized behaviors and biology.

A colony consists of 10-50K+ individuals that function as a unit.

‘Hive Mind’

Honey Bees exhibit truly social behavior (Eusociality)

1. Cooperative Brood Rearing

2. Reproductive Division of Labor

3. Multiple Overlapping Generations

The ‘Caste’ of characters

Worker: Infertile Female (Diploid)

Queen: Fertile Female (Diploid)

Drone: Fertile Male (Haploid)

Each caste has a different development cycle

Eggs

The Honey Bee Life Cycle
Worker Bee

- 21 day development
- 4-6 week lifespan
- All non-reproductive colony tasks are carried out by workers
- Temporal Polyethism: Jobs change over lifespan depending on colony needs
- Young bees do ‘in hive’ tasks, older bees work externally

Tasks of the Worker Bee

Drones

- 24 day development
- Very large eyes
- Highly developed flight muscles
- No Sting
- Present spring through autumn
- Only leave colony for orientation and mating flights

Drones

Sole task is reproduction, but . . .

- The phallus breaks off and drone dies shortly after mating
- Drones are evicted from the colony as winter approaches
Queen

- Each Colony has only 1 queen
- She is vital, but not in charge
- Genetically identical to workers (same egg)
- 16 Days from egg to emergence

Queen Development

- Royal jelly has elevated levels of protein and fat
- Diet increases growth rate and size
- Increased nutrition develops the ovaries and glands

Seasonal population dynamics

Colonies size and behavior changes throughout the year in response to day length, environmental conditions and floral resources

Winter Dormancy: Clustering, Queen stops laying
Early Spring: 'Spring turnover', Intense brood rearing, Population building, Drone rearing
Late Spring: Rapid population growth, Foraging, Swarming
Summer: Maximum population, Intense foraging
Autumn: Consolidation, laying slows, foraging tapers off
Late Autumn: 'Winter bees emerge', drones evicted
Colony Reproduction -- Swarming

- Timing influenced by colony health, population, available resources, and environmental conditions
- Typically occurs in spring to early summer
- ~1/2 bees go with existing queen
- Scouts search for new nest site

Swarms are generally very docile

Swarms

- ~1/2 bees remain in hive
- Multiple virgin queens emerges and battle

- 1 virgin survives to mate and head new colony

Colony architecture

Parallel 2-sided combs separated by the ‘bee space’

Hexagon cell pattern = greatest cell to comb ratio
Colony Configuration
Roughly spherical broodnest
Band of pollen surrounding brood
Honey around perimeter
Homeostasis: Maintain 30-35 Celsius

Communication mechanisms
- Pheromones
 - Queen
 - Brood
 - Alarm
 - Homing
 - Dancing

Queen Pheromone
- Induces queen retinue behavior
- Promotes colony morale
- Suppresses desire to raise new queen
- Inhibits the development of worker ovaries (laying workers)

Brood Pheromone
- Stimulates brood feeding behavior
- Promotes pollen foraging
Homing Pheromone

- Aids in orientation of workers
- Released from the exposed Nasanov gland
 - Back of honey bee’s abdomen

 ![Nasanov Pheromone](image)

- Particularly prominent after swarming

Alarm Pheromones

- Mandibular alarm pheromone
 - 2-heptanone
- Sting gland alarm pheromone
 - Isopentyl acetate

 ![Don’t eat bananas in the bee yard](image)

The Sting

Defensive Behavior

Bees only sting once
Barbed sting and poison sac detaches
Bees die within a few minutes of stinging

~1 % of the population has anaphylactic reaction to being stung

Dance Language of the Honey Bee

- Round dance: food nearby (< 100 m away)
- Waggle dance: food further (> 100 m away)
 - Communicate distance and direction
 - Better food source -> more vigorous waggling
 - Trophallaxis (Giving a taste)
The Waggle Dance

Honey Bee Vision

Bee Magnetism

• Bees ‘+’ charge
• Flowers ‘-’ charge
• They become “attracted” to each other while in close proximity.

What do bees forage for?

• **Pollen**: Provides protein, lipids, minerals
 Essential for larval growth and young bee development

• **Nectar**: Carbohydrate source
 Evaporated and turned into honey

• **Propolis**: ‘Bee glue’ from plant resins
 Structural uses and immune function

• **Water**: colony ventilation and cooling
Foraging stats

• Foraging is the last job of a bee's lifespan (~3 weeks)
• Foraging radius of several miles
• Flight speed up to 25 mph
• A forager can travel over 500 miles in a lifetime
• Foragers carry half their body weight in nectar

Pollen Foraging

• Essential to for brood rearing and healthy young bees
• Stored as ‘bee bread’ in the colony
• Need diversity of flowers for complete nutrition
• Flower ‘fidelity’ during foraging flights

Flower Fidelity

Nectar → Honey

• Nectar is mostly water: 10-40% sugar
• Enzymes breakdown nectar to simple sugars
• Evaporation: fanning by bees
• Capped when <18% moisture content
• Honey will granulate, but it will never spoil
• Honey characteristics vary by floral source
Propolis- ‘Bee Glue’

- Plant resin rich in polyphenols
- Used in the colony to seal cracks and help airflow
- Also important in colony immune system
- ‘Mummification’ of large debris

Questions?

Why are the bees dying???

Bees face a multitude of threats

- Pesticides
- In Hive Chemicals
- Parasites
- Poor Nutrition
- Viruses
- Lack of Genetic Diversity
- Migratory Stress
Varroa Mite
External parasite – visible without microscope
Native to Asian Honey Bee (A. cerana)
Shifted Host to A. mellifera
Arrived in USA in 1987—changed bee industry
Globally present in honeybees around the world . . . Except Australia
Varroa mites are the biggest management challenge facing beekeepers and left untreated result in near 100% colony mortality

Varroa mite biology
• Feed on hemolymph (bee blood)
• 10 day brood cycle in capped cells
• Preferential reproduction in drone brood
• Phoretic on adult bees
• Spread between colonies: Robbing, Drift, Foraging
• Vector of viruses

Viruses
- Deformed Wing
- Chronic Paralysis
- Sacbrood

Nosema
- Gut pathogen of adult honey bees
- Disrupts protein metabolism
- Energetic stressor of adult bees
- Reach highest levels in winter and early spring

Dysentery
Brood Diseases

American Foul Brood (AFB)
Paenibacillus bacteria
Extremely contagious – spores
Antibiotic resistance

European Foulbrood (EFB)
Melissococcus plutonius bacteria
Associated with environmental and nutritional stress
Not as severe as AFB
May respond to antibiotics

Pests
- Small Hive Beetle
- Wax Moth
- Rodents
- Bears

Beekeeping Chemicals
Wax is fat soluble as are most chemical . . .
Making honey combs chemical sponges
Beekeepers apply chemicals and antibiotics
Impact of chronic residual exposure is largely unknown
Approximately 1 Billion pounds of pesticides are used annually in US

Bees can’t read

How are bees exposed to pesticides?

- Direct Spray
- Pollen & Nectar
- Wax Residues
- Water Sources?

Pesticides

- Neonicotinoids
- Fungicides
- Herbicides
- Other Insecticides

Bee Kill Incident
Acute Bee Kill

Table 2: Prevalence of Pesticides found in all samples (n=101) analyzed for the National Honey Bee Disease survey

- 8 Fungicides
- 1 Herbicide
- 1 Insecticide
- 3 Miticides
- 13 pesticides detected
- 1 bee bread sample

Average Total Pesticides Detected Per Field By Crop

Poor Nutrition
Floral Diversity VS. Monocrop

Colony Collapse Disorder (CCD)
- Colony Collapse Disorder—a *specific condition* in which neither dead or alive adult bees are present in the colony
- Rapid Decline
- Capped brood and food stores, queen are present
- No Robbing Behavior

CCD causes remains largely unknown but *honey bee mortality does not necessarily equal CCD*
Why should you care about bees?

Honey Bees are the backbone of agriculture

1/3 of our food supply is dependent on honey bees for pollination

Courtesy: Dr. Caron

Do you like to eat?

1/3 of our food supply is dependent on honey bees for pollination

http://www.mnn.com
Pollination without bees

Importance of Bee Pollinators

- Bees: critical for food security and functional ecosystem
- Bees pollinate more than 90 different crops
- Managed honey bee colonies in the U.S.: 2.7 million
- Native bees: ~4000 species (U.S.) and 900 in the PNW
- Native bees are subject to many of the same threats as managed honey bees

Value of Bees

~$500 Million in Oregon
~$20 Billion Nationwide
~$216 Billion Worldwide

Major Pollination Routes in the US
1.6 million honey bee colonies employed for almond pollination

Almond Pollination

Honey bee pollination in Oregon

Major crops dependent on bee pollination:
- Blueberry
- Cherries
- Pear
- Apple
- Cane berries
- Cranberries
- Strawberries
- Clover
- Meadowfoam
- Vegetable seeds

Want to help Bees?

Plant More, Spray Less

Support Beekeepers: Buy Local Honey

What’s good for bees is good for all
Providing forage for bees WILL save them

Beneficial options
- Conservation cover
- Hedgerows
- Insectary strips
- Covercropping

“Farm the Best, Conserve the Rest”

Examples of some bee friendly plants

Trees: Black locust, tulip tree, basswood.

Hedgerow plants: Willow, partridge pea, acacia.

Flowers for the landowner: Milkweed, tansy phacelia, clover, mustard

Flowers for the homeowner: Lavender, borage, rudbeckia, sunflowers.

Planting Resources

[Image of Project Apis m.]

[Image of Xerces Society]
Spraying
- Use active ingredients with least impact on bees,
- Consider formulation,
- Label guidelines only apply to honey bees,
- Don’t spray on plants in bloom,
- Spray at night, when dry and still.

Pest Control
- Organic Approved Pesticides (Damaging)
 - Pyrethrins = VERY toxic to bees
 - Spinosad = VERY toxic to bees
- Less damaging
 - Insecticidal soap
 - Horticultural oil
- Least damaging
 - Insect repellents (e.g. garlic, citrus oils)
 - Kaolin clay
 - Pheromone traps
 - Mating disruptors

- Helpful practices
 - Floating row covers
 - Fruit bagging
 - Crop rotation and diversity
 - Resistant varieties

PNW 591
Publication from OSU Bee Lab
Available free online

Bee Saving Steps you can take...
- Plant a variety of flowers that bloom throughout year
- Consider natives
- Set Mower Height to Leave Clover and Dandelions
- Leave an Area that is Mulch-Free and Wild for Native Bees
- Minimize Chemical Use
Thank You!

Questions?