March in now complete with its maddeningly cold temperatures, frigid winds and a slowly developing wheat crop. This slow approach of spring has turned winter wheat weed control efforts into a waiting game for many local growers and applicators. With April now upon us, growers are also faced with restrictions of certain herbicides especially in Milton-Freewater and the adjacent Walla Walla Valley.

A quick check recently with Milton-Freewater fruit and grape growers, indicates that leaves are starting to emerge on horticultural crops in the Walla Walla Valley, which raises the need for additional care to be taken as herbicide applications on wheat are moved later into the spring this year. This need for care is not new information by any means, but there are some newer herbicides that can help lessen the worries for all parties concerned.

For downy brome control, Powerflex and Olympus Flex are good choices. Powerflex offers a 9 month plantback restriction which offers some flexibility in future planting decisions. Dan Ball, OSU Weed Scientist recommends a full 3.5 oz rate for a spring application of Powerflex. It has good crop safety, and while he has noted some yellowing with Powerflex under cool application conditions but he hasn’t seen this affect yield.

If broadleaf weeds are a problem in the field, Huskie is a new broad spectrum herbicide, without the volatility issues of growth regulator herbicides such as 2,4-D and dicamba. Research has shown it to be effective against prickly lettuce and kochia, plus many others. Huskie should be ground applied at the 11 – 15 oz rate with a spray volume of 10 or more gallons per acre. Other herbicides are also available and a partial list can be seen in Table 1.

Table 1. Alternative herbicides for wheat less likely to injure grapes.

<table>
<thead>
<tr>
<th>Name</th>
<th>Brand Name</th>
<th>Trade Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial</td>
<td>Hoelon</td>
<td>Olympus</td>
</tr>
<tr>
<td>Buctril</td>
<td>Huskie</td>
<td>Olympus Flex</td>
</tr>
<tr>
<td>Discover</td>
<td>Linex</td>
<td>Paramount</td>
</tr>
<tr>
<td>diuron (Karmex)</td>
<td>Maverick</td>
<td>PowerFlex</td>
</tr>
<tr>
<td>Everest</td>
<td>metribuzin (Sencor)</td>
<td>Puma</td>
</tr>
</tbody>
</table>

Continued on the next page
Grapes continue to be the most sensitive crop that we have in the area. Herbicide drift can injure foliage, shoots, flowers and fruits. If injury is severe enough, or occurs repeatedly, it can cause reduced yield, poor fruit quality, and occasionally, vine death. A partial list of common growth regulator herbicides and other herbicides that can injure grapes is found in Table 2. With these new tools available in the fight against weeds in the wheat fields, maybe this is our opportunity to not get mad, but to get even!

Table 2. Herbicides that have potential to injure grapes.

<table>
<thead>
<tr>
<th>Growth regulators</th>
<th>ALS inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D</td>
<td>Dicamba</td>
</tr>
<tr>
<td>Amine 4</td>
<td>Banvel</td>
</tr>
<tr>
<td>Barrage</td>
<td>Clarity</td>
</tr>
<tr>
<td>Esteron 99</td>
<td>Rave*</td>
</tr>
<tr>
<td>Formula 40</td>
<td>Landmaster*</td>
</tr>
<tr>
<td>Hi Dep</td>
<td>MCPA</td>
</tr>
<tr>
<td>LV-4</td>
<td>RT Master</td>
</tr>
<tr>
<td>LV-6</td>
<td>Starane</td>
</tr>
<tr>
<td>Saber</td>
<td>Tordon</td>
</tr>
<tr>
<td>Salvo</td>
<td>Turflon</td>
</tr>
<tr>
<td>Savage</td>
<td>Trimec</td>
</tr>
<tr>
<td>Tricep</td>
<td>WideMatch</td>
</tr>
<tr>
<td>Weedar 64</td>
<td></td>
</tr>
<tr>
<td>Weed-B-Gone</td>
<td></td>
</tr>
<tr>
<td>Weedmaster</td>
<td></td>
</tr>
<tr>
<td>Weedone</td>
<td></td>
</tr>
</tbody>
</table>

This list is not all-inclusive; other herbicides also may injure grapes.

A prepackage mixture containing a growth-regulator herbicide as at least one active ingredient.

For additional information on preventing herbicide drift the following publications are available on-line: EM 8860 Preventing Herbicide Drift and Injury to Grapes (http://extension.oregonstate.edu/umatilla/mf/sites/default/files/em8860.pdf) and EM 8737 Preventing Phenoxy Herbicide Damage to Grape Vineyards.