Grain and Rain

The average price of soft white wheat at Portland for May was $5.74 and club was $6.20 per bushel. Barley averaged $110 per ton for the same period.

Precipitation as reported at the Sherman Experiment Station was 1.35 inches, thanks to the nice drink that started the month. The May total was .56 inches above normal. Crop year precipitation stands at 87% of normal.

Spray Report

We want to remind all pesticide applicators to use extreme caution when spraying around crops not listed on your pesticide labels. Drift is never a good idea and it can cause damage to the crop yield or may cause the crop to become un-marketable due to the non-labeled residue on it. As we are seeing more and more non-traditional, high value crops in non-traditional areas, we need to review our individual practices.

If you spray next to one of these “other crops,” be sure the breeze is blowing away from them in order to reduce the risk of drift. Be cautious when spraying on days when there is no wind, as these can signal an inversion where the spray droplets can remain suspended and float for miles with no direction or discretion as to where they land. Use drift retardants when needed. Only hire competent, commercial sprayers and remind them of non-target crops near your fields.

Experience has taught us that communication is key. Get to know your neighbors and maintain an open dialogue with them. Find out what pesticides you both use. Find out if their crop has periods of extreme sensitivity to pesticides. Install some wind socks to help you determine when you can safely spray nearby. Consider ground application for the first 120 feet from the fence line, then turn the rest of the field over to the air crew. And let that neighbor know when and even why you are planning to spray, and share any precautions you plan as well.

Ask them to keep you in the same loop for things happening on their side of the fence. He doesn’t want to buy your crop either. There’s the old saying that good fences make for good neighbors, but what makes for better neighbors is being a good neighbor.

With harvest coming in the next two months there is no Newsletter planned for that time.

Have a safe and bountiful harvest, and a profitable marketing season!
Field Days June 9 and 10

Plan to attend these two Experiment Station Field Days: Tuesday, June 9 at Pendleton and the Sherman Station Field Day on Wednesday, June 10, at Moro. Although both are cereal driven, there are differences in the topics and the relevant data shared, as these two stations often end up with different answers due to their moisture differences.

The **Pendleton Field Day** starts at 8:20 am, looking at breeding for resistance to Cephalosporium Stripe, managing root nematodes, effective weed control techniques in no-till, winter wheat variety testing, barley updates, safflower and canola testing, nitrogen management in hard red wheat, club breeding updates, sequestering carbon under alternative cropping systems, capitalizing on the carbon cap and trade rules, and biomass production.

The **Sherman Station Field Day on Wednesday** represents a larger portion of the wheat producing area of the state, the lower rainfall zones. Topics are relevant for our dryland region: Can we capitalize on the carbon dioxide cap and trade systems?; managing the yield robbing root lesion nematodes; the probability of rain in September and October; breeding for resistance to Cephalosporium Stripe of wheat; and the popular breeding updates on winter wheat, club wheat and barley.

The program for the Sherman Station begins at 7:30 am at the Sherman High School and concludes about 12:30. Both Stations will provide you with lunch and an hour of pesticide recertification credit. There will be a short talk at lunch in Moro regarding the possible impacts of the state budget cuts on the Station.

Range Field Day June 24

A little bit of a drive to get to the Northern Great Basin Experiment Station (about 10 miles west of Burns), but this year’s Field Day on June 24 offers topics that should appeal to local ranchers. Beginning at 9 am, it opens with a discussion on cattle and wolf interactions followed by cattle-deer-elk interactions. Then three timely management subjects: riparian grazing, post burn cattle distribution and vegetation recovery, pre- and post-burn cattle distribution in sagebrush steppe. The final topic is an assessment of cattle handling facilities. Lunch is provided with the program ending about 3 pm. This Field Day is a bit different from our usual, but topics are applicable and should be worth the time.

Wireworm Study

Last month I participated in a wireworm study with several farmers and Extension agents across wheat producing parts of eastern Oregon and Washington. As a participant, I received ten traps (a mixture of corn, wheat and oat seeds in a pantyhose). These traps were to be buried for a week across a field, retrieved, and wireworms counted and reported. I chose to place one each in ten of the fourteen trials in the Long Term Experiment Trials at the Sherman Station. The idea was to see if one treatment afforded more wireworms than another. Discovering higher numbers in one trial could lead to more in-depth study next year. So what leads to more wireworms in a field and is there a rotation that manages them better than another practice? Wireworms are actually the larvae of the adult “click beetle” The wireworms feed on the underground roots and stem of many plants. Infested crops show irregular growth and lack of vigor. Damage by the wireworms is often mis-diagnosed as winter kill.

The adult beetle is a cigar shaped brown or black beetle that can bend its head back sharply causing a distinct “click” sound, startling predators or to help right itself when rolled on its back. The larvae worm stage may grow up to about an inch in length with the head cap being the same color as the body. The body is cylindrical, smooth and wiry, assisting its ease of moving in the soil. Beetles develop in late summer but do not emerge until the following spring when they mate. Eggs (350-400 of them) are laid in the soil over a three week period. Larvae hatch and begin feeding on roots and stems in the soil, rarely causing much damage in their first year. The larval stage may last as long as 12 years, offering ample opportunity for crop damage in both the fall and spring. Damage to winter wheat is enhanced when the plants are subjected to drought stress or lack of snow cover to protect the plants. Larvae feed in the spring when the soil temperature reaches about 44 degrees, but as the temperature rises and the moisture decreases, the wireworms move deep underground. They may re-appear in the fall. Their feeding damage may increase the incidence of Cephalosporium leaf stripe. Seed treatment for wireworm control offers some seasonal protection.

Unfortunately, the results of my trial proved nothing as I caught zero wireworms in any of the long term test strips. The area received 1.35 inches of rain while I had the traps placed, making it a bit too wet for even the wireworm.