Drift-Reducing Nozzles and Core Pesticide Training
February 21, 2007
Senior Center, 860 SW Madison St.
Madras, Oregon

A drift-reducing nozzle demonstration will be part of the Core pesticide training session this year. Even if your Core component has been satisfied, this is a great opportunity to see new nozzle technology at work and the four hours of credit can apply as other hours. Licensed private pesticide applicators are required to obtain 4 core credits of the 16 that are required for recertification. Other topics will include sprayer calibration, pesticide fate, and integrated pest management.

The training will be held from 8:30 a.m. to 12:00 Noon, with the nozzle demonstration taking place at 11:00. A registration fee of $10.00 will cover the facilities and refreshments. For more information or to register contact the OSU/Jefferson County Extension office at 34 SE D St., Madras, OR, 97741, or call (541) 475-3808.

Rich Affeld

Hands-on Crop Diagnostics
February 28, 2007
Mackie Conroy Facility, Jefferson County Fairgrounds
Madras, Oregon

The Oregon State University Crop Diagnostics Training Team will demonstrate its unique “hands-on” and practical step-by-step approach for teaching the art and science of accurately diagnosing agricultural crop problems. Agriculturists can sharpen their trouble-shooting skills for improved crop production management. Demonstrations, posters, and role playing situations will illustrate insect, nematode, weed, disease, soil fertility, irrigation, and cultural problems associated with many crops such as wheat, onions, potatoes, alfalfa, grass seed, and others. Workshops will also be conducted in Ontario, Hermiston, and Klamath Falls. Extension, research, and teaching staff from Oregon State University’s departments of Crop and Soil Science, Botany, and Plant Pathology will conduct each workshop.

See, Pesticides: Crop Diagnostics, Page 2
Pam Wiederholt - Ag Newsletter Coordinator, 447-6228
Libby Rodgers - Ag. Program Assistant/Fire Prevention, 447-6228
Barbi Riggs - Livestock and Water Quality, 447-6228
Dana Martin - Small Acreage, 548-6088
Steve James - Potatoes, 475-7107
Steve Fitzgerald - Forestry, 548-6088
Brian Dugan - Crop Physiologist, 475-7107
Amy Detweiler - Horticulture, 548-6088
Tim Deboodt - Range Resources and Livestock, 447-6228
Fara Currim - Ag. and Natural Resource, 553-1520
Fred Crowe - Plant Diseases, 475-7107
Marvin Butler - Mint and Seed Crops, 475-3808
Mylen Bohle - Forage, Pasture and Cereals, 447-6228

Central Oregon Agricultural Extension Staff:

Central Oregon County Extension Offices:
Crook County Extension Service - Phone 447-6228, 498 SE Lynn Blvd., Prineville, OR 97754
Deschutes County Extension Service - Phone 548-6088, 3893 SW Airport Way, Redmond, OR 97756
Jefferson County Extension Service - Phone 475-3808, 34 SE D St., Madras, OR 97741
Warm Springs Indian Reservation - Phone 553-3238, 1110 Wasco St., PO Box 430, Warm Springs, OR 97761

Central Oregon Agricultural Research Centers:
Madras Site – Phone 475-7107, 850 Dogwood Lane, 97741
Powell Butte Site - Phone 447-5138, 8215 SW Hwy, 126, 97753

Central Oregon Agricultural Extension Staff:
Rich Affeldt - Mint, Seed Crops and Weed Control, 475-3808
Mylen Bohle - Forage, Pasteure and Cereals, 447-6228
Marvin Butler - Mint and Seed Crops, 475-3808
Fred Crowe - Plant Diseases, 475-7107
Fara Currim - Ag and Natural Resource, 553-1520
Tim Deboodt - Range Resources and Livestock, 447-6228
Amy Detweiler - Horticulture, 548-6088
Brian Dugan - Crop Physiologist, 475-7107
Steve Fitzgerald - Forestry, 548-6088
Steve James - Potatoes, 475-7107
Dana Martin - Small Acreage, 548-6088
Barbi Riggs - Livestock and Water Quality, 447-6228
Libby Rodgers - Ag, Program Assistant/Fire Prevention, 447-6228
Pam Wiederholt - Ag Newsletter Coordinator, 447-6228

The above individuals represent 10.25 full time equivalents devoted to extending agriculture information to producers. Many of the individuals, in addition to agriculture, have assignments in research, 4H/ youth, administration and community resource education.

Often it is appropriate to mention brand names of some commercial products; however, they are used only for the purpose of information. Extension does not guarantee or warrant the standard of the product, nor does it imply approval of the product to the exclusion of others.

This publication was produced and distributed in furtherance of the Acts of Congress of May 8 and June 30, 1914. Extension work is a cooperative program of Oregon State University, the U.S. Department of Agriculture, and Oregon Counties.

Oregon State University Extension Service offers educational programs, activities, and materials—without regard to race, color, religion, sex, sexual orientation, national origin, age, material status, disability, and disabled veteran or Vietnam-era veteran status as required by Title VI of the Civil Rights Act of 1964, Title IX of the Education Amendments of 1972, and Section 504 of the Rehabilitation Act of 1973. Oregon State University Extension Service is an Equal Opportunity Employer.

OSU Extension programs will provide reasonable accommodations to persons with physical or mental disabilities. Contact Pam Wiederholt at (541) 447-6228 to request reasonable accommodations.

Pesticides: Crop Diagnostics

Continued from Front Page

In Madras, the February 28th workshop will run from 8:30 a.m. to 12:30 p.m. Crop consultants, farmers, pesticide applicators, land managers, Extension educators, and providers of ag products or services are encouraged to attend. Pesticide recertification for OR, WA, & ID and CCA credits will be offered. Pre-registration is requested and enrollment is limited to 40 people. Cost for the workshop is $40.00 per person and payable to Oregon State University. Please call (541) 475-3808 for more information or to pre-register.

Rich Affeldt

Weed Forum at Warm Springs
February 28, 2007
Community Center, 2200 Hollywood Blvd.
Warm Springs, Oregon

OSU Extension Service at Warm Springs will be hosting a Weed Forum from 10:00 a.m. – 3:00 p.m. to discuss various aspects, strategies, and ongoing local research concerning weed management. An educational “weed trailer” will be on display, courtesy of the Interagency Weed Management Team. Presentations will start at 12:00 Noon and will include the following topics: Common Weeds of the Range, Seeding for Fire Rehabilitation, Local Range Treatment Plots, Grazing for Weed Management, and How to Recognize Invasive Species. The Oregon Department of Agriculture, the County Weed Departments, Central Oregon Agriculture Research Center, Bureau of Indian Affairs, and the Tribal Fire Management division will all be participating. Lunch will be served from 11:30 a.m. – 1:00 p.m. Please call (541) 553-1520 for more information or to pre-register.

Fara Brummer

USDA Upcoming Closing Dates

USDA’s Risk Management Agency (RMA) reminds Pacific Northwest producers of the March 17th closing deadline for their 2008 crop year spring Multi-Peril Crop Insurance (MPCI) coverage.

March 17th is also the deadline for new applications under the Adjusted Gross Revenue-Lite (AGR-Lite) insurance program throughout the states of Alaska, Idaho, Oregon, and Washington.

For more information see the RMA Web site at: http://www3.rma.usda.gov/tools/agents/ or contact Jo Lynne Seufer, USDA Risk Management Agency at (509) 228-6320 or email at: jo.lynee.seufer@rma.usda.gov.

Jo Lynne Seufer, USDA Risk Management Agency
Forages —

Growing Degrees and Forage Fertilization

Usually I start publishing a growing degree table update with the February Ag Newsletter. We ran out of space with this newsletter, so will update the table in next month's newsletter. As of February 10th, the accumulated growing degrees (gdd’s) from January 1st (base temperature of 32 degrees F) ranged from a low of 4 gdd’s at Seneca to a high of 142 gdd’s at Madras.

If you want to shift forage pasture production up in the spring, one needs to think about applying N fertilizer once we have accumulated 360 gdd’s. We did find that total production is somewhat the same through two-grazing, but did shift grass growth earlier.

If you want to optimize grass hay production, then one would apply N fertilizer around 540—725 gdd’s. It is clear that if one waits to apply N fertilizer beyond 775 gdd’s, then there is definite decrease in yield due to lost growing season that you can never recover.

Bse temperatures for some select crops are 32 degrees for cereals and T-Sum, but actual top growth for alfalfa and cool season grasses is around 41 degrees F. Even better, for those of you with computers and internet hookup, log on to this web site to follow gdd’s: http://pnwpest.org/wea.

Preceding the annual meeting will be a Forage Information Day. Some of the topics to be covered will include local research updates on Seeding Rates for Alfalfa, Nitrogen Rate Effect on Biological and Economic Production of Grass Hay and Pasture, T-Sum N Timing for Grass Hay, Grass Variety Trial Results, and Alfalfa Variety Trial Results, PNW Hay Report, etc. For more information and to pre-register by Feb. 26th, call (541) 447-6228.

C.O. Hay Growers Annual Meeting

March 1, 2007

Brother’s Restaurant Banquet Room
Prineville, Oregon

The COHGA will hold its annual meeting to decide its status, hold elections for board members and officers, and decide what its future direction will be (starting time for meeting not known yet, TBA). There will be no-host social hour from 5:00 p.m.—6:00 p.m., with dinner starting at 6:00 p.m. The business meeting will follow dinner (menu and price are not yet set yet).

The existence, or lack thereof, of Central Oregon Hay Growers Association could have a direct influence on the forage research programs in central Oregon. We seriously need to revive the organization. We believe COHGA serves a useful purpose and the OSU Ag Experiment Station needs support from the forage industry.

Camelina Production Workshops

Feb. 29, 2007,

Jefferson County Fairgrounds, 10:00 a.m.
Madras, Oregon

Farm Service Agency Center, 3:00 p.m.
Redmond, Oregon

Wy’East is cooperating with the Great Plains Oil and Exploration Company to put on these two production workshops. University Research and Extension Agronomists, Stephen Guy, WSU, Don Wysocki, OSU, and Bill Schillinger, WSU, will be the featured speakers. For more information or to pre-register call (541) 923-4358, Ext. 104.
Cereals —

2007 Spring Wheat Trials

The 30 entries averaged 101 bu/ac for yield, with the highest entry (Cabernet HRS) at 122 bu/ac and lowest yielding entry (OR 4201104 HWS) yielded 73 bu/ac at the COARC, Madras Oregon site. Other varieties that were not significantly differently yielding included (in parentheses, following cultivar name is lodging score) UI Cataldo (0%), Blanca Grande (0%), Alpowa (63%), Nick (0%), Hank (3%), Tara 2002 (57%), IDO 3775 (60%), Jefferson (43%), Alturas (33%), Lolo (45%), Sagittario (3%), and UI Winchester (57%). There were no statistical differences between 122 and 96 bu/ac (at LSD 0.05), which means you will be right 95% of the time.

For complete data information on the 2007 spring wheat trial results or other wheat classes and trial locations, go to: http://cropandsoil.oregonstate.edu/wheat/, or call (541) 447-6228 for a hard copy.

As Spring Approaches, Think of Fertilizing Wheat

Research, on-farm, and on-station at the COARC, has shown that hard red spring wheat (HRSW) nitrogen needs are a minimum of 320 lb of N per acre (soil N + fertilizer N). Soft white spring wheat nitrogen needs are just a little more than half of that amount. In general, HRSW takes 2.8-3.0 lb of N to produce a bushel with 14% protein. Soft white spring wheat yield probably tops out at 1.5 lb of N per bushel, or thereabouts. With soft white wheat, low protein is the product sought after.

With on-station variety trial research over the years, the winter wheat/triticale grain trials have been managed for 200 lb of N per acre and spring soft white wheat/triticale trials have been managed for 160-180 lb of N per acre (soil N + applied N), and for optimum yield (not optimum protein for HRSW). If greater than those rates of N were applied, we found that lodging increased. Over the years, producers and fieldmen most probably will find that each field has its own yield potential, and needs to be managed accordingly.

Local research in Central Oregon has also shown that nitrogen fertilizer needs to be applied by 1st visible node (jointing). If application is made after that, your yield potential will decrease. HR SW needs 70 percent of the nitrogen requirement to be applied at planting, with the rest (30 percent) applied no later than boot stage. It is/may also be good insurance to apply 20-40 lbs. N per acre around heading. Nitrogen applied at this late growth stage increases protein only.

Table. Nitrogen rate response of six HRSW and one SWSW varieties at the COARC Madras, Oregon in 2000.

<table>
<thead>
<tr>
<th>Treatment #</th>
<th>N Applied (Total N Available) (lb/ac)</th>
<th>Yield (bu/ac)</th>
<th>Protein (%)</th>
<th>Test Wt. (lb/bu)</th>
<th>Grain N Uptake (lb/ac)</th>
<th>Lb of N Per bu. (lb/bu)</th>
<th>N Use Eff. of Total N Avail. (%)</th>
<th>Cost of N Applied ($/ac)</th>
<th>Cost of Applied N per bu ($/bu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>135 (188)</td>
<td>132</td>
<td>10.8</td>
<td>63.8</td>
<td>150</td>
<td>1.5</td>
<td>75.8</td>
<td>101.25</td>
<td>0.76</td>
</tr>
<tr>
<td>2.</td>
<td>215 (268)</td>
<td>133</td>
<td>12.4</td>
<td>63.6</td>
<td>174</td>
<td>2.1</td>
<td>62.5</td>
<td>161.25</td>
<td>1.21</td>
</tr>
<tr>
<td>3.</td>
<td>295 (348)</td>
<td>130</td>
<td>13.9</td>
<td>62.7</td>
<td>189</td>
<td>2.8</td>
<td>52.7</td>
<td>221.25</td>
<td>1.70</td>
</tr>
</tbody>
</table>

N cost is figured at $0.75 per lb (last year it was $0.50/lb). One would also need to add an application cost. The N for treatment #1 was applied on April 1, and treatments #2 (additional 80 lb/ac) and #3 (additional 160 lb/ac), N was broadcast applied on April 19th and irrigated.

There is more in depth data published in the 2000 COARC Annual report.

To raise HRSW vs SWSW, the additional nitrogen cost will be a minimum of another $125 an acre, over and above the cost of raising SWSW. When protein is 10.5%, we think we have achieved maximum yield.

(Research was done locally by Peter Sexton, Rhonda Bafus, Neil Christensen, Russ Karow, John Bassinette, and Mylen Bohle)

Mylen Bohle
Livestock —

Avoid the Scour Hours

Calving season brings about crabby ranchers running on little sleep. Add in calf sickness and/or death and you have a high stress environment for ranchers and cattle alike. Calf scours is something most of us have experienced and for some, experience year after year. Calf scours result from infection from a variety of viruses (rotavirus, corona virus), bacteria (E. coli, salmonella) and protozoa (cryptosporidiosis, coccida). These infectious agents are endemic, meaning that they are present in the herd most of the time, and most animals in the herd become infected, and thus become immune to them as some point in their life. The initial infection is usually silent or lacking physical sign of infection, largely due to innate response followed by the adaptive immunity. Innate response results from the body providing protection against a disease by immediate response to a pathogen in a generic, non-specific manner. Adaptive immunity results when the body recognizes a specific pathogen and mounts a response to the pathogen specifically.

Newborn calves are very susceptible to infection because both the innate and adaptive immune systems are immature at birth. Often, passive immunity from the dam is also inadequate to provide substantial protection from disease. Furthermore, inadequate nutrition also decreases the effectiveness of innate response and immune function. A calf will show clinical sign of disease when it is challenged by an infectious agent at doses too large for the innate response to resist.

It is very common to focus all of our efforts on treating sick calves during an outbreak. However, we often fail to recognize that sub clinically infected animals are shedding the infectious agent. Mother cows are usually the initiating vector for contamination. The virus is shed from a few mother cows and is spread in the environment to other cows, attaching to the hair coat and udders. We end up with sequential infections (dam to calf, to older calf to younger calf) and as we move through this chain the level of pathogen shedding may increase. We will eventually reach a pathogen load that exceeds the calf’s ability to resist disease. This process explains why calves born later in the calving season are at the greatest risk of disease and death.

We often see the worst cases of scours when the environment favors pathogen resilience and impedes innate response, such as large fluctuations in temperature from day to night, high moisture, muddy conditions and a high pathogen load.

As the number of pathogens present increases, so does the likelihood that a calf will be in direct contact with the pathogen for a period of time that will initiate disease. Therefore, the first step to combat disease it to decrease the number of pathogens and duration the calf will be in contact with pathogens. The Sandhills Calving System was designed to do just that. It has three main components:

1. Prevent pathogen/calves contact by using clean calving pastures.
2. Prevent direct contact between younger and older calves.
3. Prevent later born calves (youngest calves) from being exposed to an accumulation of pathogens in the environment.

The Sandhills Calving (SC) System accomplishes these goals by routinely moving pregnant cows to new calving pastures. Therefore, all calves within a pasture are of similar age. A case study of a Nebraska 800-900 head cattle herd found this system saved thousands of dollars. The calving season began in March and cows were historically calved in calving lots. As the season progressed, pairs were moved out of the lot into larger pastures. Mortality rate was reported at 14% and 6.5% for two years with mortality around 8.5%. Veterinary expenses averaged $3,114.18 per year primarily for antibiotics and fluids.

The strategy of CS system was to move heavy cows every week, leaving pairs behind. Initially, all cows were moved into pasture 1 when the first calf was born. After 2 weeks, heavy cows moved to pasture 2, leaving pairs in pasture 1. After a week of calving in pasture 2, heavy cows were moved to pasture 3, leaving pairs in pasture 2. Each subsequent week, heavies were moved to fresh pasture and pairs remained in the pasture it was born in. The result was multiple pastures with calves that were within one week of age of each other. After the youngest calf was 4 weeks old, all cattle were brought to a common pasture.

After implementing the SC system in this herd for three years, it was estimated that the average veterinary expenses for the season was around $128.83 per year as only 0-4 calves experienced scours, with 0 death loss. Estimated savings of $40,000-50,000.00 per year resulted from improved calf performance, decreased death loss and reduced doctoring expenses.

See Livestock: Scour Hours, Page 6
Livestock: Scour Hours

Continued from Page 5

A second case study was a 400 head cattle herd historically utilizing intensive management grazing (moving cattle every 2-4 days) and early summer calving. This herd had experienced 6.5% and 11.9% death loss over 2 years prior to implementing SC system. The design of their SC system called for moving heavy cattle every 10 days or whenever 100 calves were born.

The resulting groups also moved according to forage availability, however, calves within a given group never exceeded 100 hd and were born within 10 days of each other.

All cattle were commingled after the youngest calf was 4 weeks old. The result after 2 years of implementation was a significant reduction in death loss. In fact no deaths occurred as a result of scours and total death loss was reduced to 2.3% and 1.5%.

The design of the Sandhills Calving System was a bit different for these two ranches, but key component of both systems was age segregation of calves and movement of heavy cows to new pastures rather than pairs. Age segregation stopped serial passage of pathogens from older calves to younger calves and movement of heavies prevented build up of pathogens in the calving environment. Together, these components limited the exposure of newborn calves to overwhelming dose load of pathogens.

Obviously, this system requires several pastures and routine movement of cattle. Designing a SC system must take into account pasture availability and labor. If you plan appropriately, this system may be the tool in which to avoid the scour hours.

References

Barbi Riggs, barbi.riggs@oregonstate.edu, (541) 447-6228

U.S. Average Returns for Cow-calf Producers and Cattle Feeders for the Past 10 Years (Ritchie et al. 2008; USDA, Mintert and LMIC)

<table>
<thead>
<tr>
<th>Year</th>
<th>Cow-calf</th>
<th>Cattle Feeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>5</td>
<td>-29</td>
</tr>
<tr>
<td>1998</td>
<td>-30</td>
<td>-70</td>
</tr>
<tr>
<td>1999</td>
<td>30</td>
<td>26</td>
</tr>
<tr>
<td>2000</td>
<td>40</td>
<td>-35</td>
</tr>
<tr>
<td>2001</td>
<td>45</td>
<td>-43</td>
</tr>
<tr>
<td>2002</td>
<td>15</td>
<td>-5</td>
</tr>
<tr>
<td>2003</td>
<td>85</td>
<td>102</td>
</tr>
<tr>
<td>2004</td>
<td>147</td>
<td>-42</td>
</tr>
<tr>
<td>2005</td>
<td>135</td>
<td>-26</td>
</tr>
<tr>
<td>2006</td>
<td>50</td>
<td>-72</td>
</tr>
<tr>
<td>2007 (projected)</td>
<td>49</td>
<td>-27</td>
</tr>
</tbody>
</table>

General Ag —

Aspen Management

March 17, 2008

4-H Clover Club Building, 502 SE Lynn Blvd.

Prineville, Oregon

The workshop, organized by OSU College of Forestry Extension Service, Crooked River Watershed Council, and Forest Restoration Partnership, will run from 4:00 p.m. to 7:30 p.m. Dinner will be included.

The workshop will cover aspen biology and ecology, indicators of aspen decline, and timber and range management options for enhancing aspen stands. Examples will be used that pull together all aspects of aspen management including planning for aspen improvement and monitoring your successes. A half day field tour later in the year to see examples of aspen management strategies will be a follow up to the workshop.

For more information or to pre-register call (541) 766-3556.

Chrissy Lucas
Saturday, March 15, 2008
Registration: 8:30am; Classes: 9am-4:30pm
North Sister Building, Deschutes County Fairgrounds
Redmond, Oregon
For information call OSU Extension Service at (541) 548-6088 x 7957
email: dana.martin@oregonstate.edu

2008 LOAFA Conference Registration
(Class Descriptions Pages 8 & 9)

Class Selection (list first 2 choices)

Session A 1st: ___________________ 2nd: ___________________
Session B 1st: ___________________ 2nd: ___________________
Session C 1st: ___________________ 2nd: ___________________
Lunch Break: Bring a sack lunch, visit display booths, guest speaker
Session D 1st: ___________________ 2nd: ___________________
Session E 1st: ___________________ 2nd: ___________________
Session F 1st: ___________________ 2nd: ___________________

Name: ___________________ Address: ___________________
City: ___________ ZIP: _________ Phone: ___________
Email: __

Please include payment (Make checks to OSU Extension Service)
_____ $29.00 per person
_____ $50.00 for two (Include 2 registration forms for separate class requests)

Mail registrations to: (Due by March 10, 2008)
OSU/Deschutes County Extension Service
LOAFA Conference
3893 SW Airport Way
Redmond, OR 97756
Session A (9-9:50am)
A1 Horse Basics: I have a horse, now what?
This class will cover what you need to know to be a responsible horse owner; basic shelter needs, health requirements, feed and nutrition and more to make the most of your equine experience.
(Barbi Riggs, OSU Extension Service)

A2 Hay Production: Producing and Putting up Quality Hay
You’ve grown your hay, now what? Is it too wet? Is it too dry? When should it be turned? Learn the art and understand the science of “putting up” hay and its effect on quality. Bring your questions about conserving hay and storing it properly. (Mylen Bohle, OSU Extension Service)

A3 Wildfire and Your Land
Learn about the risks living with wildfire in Central Oregon. Learn about techniques used to protect your land, home, and outbuildings. Learn about fire protection in your area and state regulations that MUST be met. (Libby Rodgers, OSU Extension Service)

A4 Fruit Trees in Cold Climates
Learn how to be successful with growing fruit in Central Oregon. Varieties, pruning techniques and other hints will be shared to make your experience a good one. (Clive Kaiser, OSU Extension Service)

A5 Preserving Wild and Domestic Meat, Poultry and Game
Now that you’ve grown it or bagged it, learn to preserve. Discover how to freeze, dry and can your product while learning about equipment, safe food handling and packaging techniques. Make jerky and pressure-can meat; recipes will be shared. Bring a pint canning jar, new lid and rust-free ring if you want to take something home. Additional lab fee: $15; Pre-registration required. (Glenda Hyde, OSU Extension Service)

Session B (10-10:50am)
B1 Green Acres for Equine
Keep your pastures productive and your horse healthy by understanding equine grazing behaviors. Learn about rotation systems and design, fencing, manure management and utilization of dry lots. (Barbi Riggs, OSU Extension Service)

B2 Rodent & Wildlife Control on Small Acreages
Pocket gophers, ground squirrels, voles and rock chucks, oh my! Learn about their biology and lifestyle, and methods to control these critters. (Mike Slater, USDA Wildlife Biologist)

B3 Poultry are at Home on the Range
Learn the in’s and outs of raising free-range chickens.

Session C (11-11:50am)
C1 Low Carb Diets for your Horse
Is the low carb fad all it is cracked up to be? Learn whether or not carbohydrates truly have an effect on foundering and colic. We will also discuss hay options and how hay becomes low or high carb. (Wendy Krebs, DVM, Bend Equine Medical Center)

C2 Creating Fire-Resistant Landscapes
The plants you select for landscaping may reduce your risk from wildfire. Learn what plants to select and where to plant to protect your property from disasters. (Stephen Fitzgerald, OSU Extension Service)

C3 Why Weed Control Matters
Identify noxious weeds on your land. Learn about herbicides, how they work and successful management practices you need to know to win the war. (Rich Affeldt, OSU Extension Service)

C4 What Can I Do with My Small Acreage?
Before you make a decision, consider your goals, physical resources of your land, family skills, interests and more. This class will cover such things as the merits of agricultural deferral, costs and returns of different crops, finances, and other things to consider before diving in. (Dana Martin, OSU Extension Service)

C5 Preserving Tomatoes and Tomato Products
Save the rich flavor of summer and vine-ripened tomatoes. Learn how to dry and can tomatoes safely and about equipment needs. Try drying tomatoes in oil and canning salsa. Recipes will be provided. Bring a small jar with a tight-fitting lid and a pint canning jar, new lid and rust-free ring if you wish to take something home. Additional Lab fee: $15. Pre-registration required. (Glenda Hyde, OSU Extension Service)

Classes continued on page 9
Lunch (Noon-1:30)
Bring a sack lunch, view displays and learn about Water Quality Requirements and your responsibilities as a land owner.
(Ellen Hammond, ODA Water Quality Specialist)

Session D (1:30-2:20pm)
D1 Managing trees on small forest parcels
Are your trees feeling crowded? Keep your trees healthy by learning more about thinning, insects, diseases and overall management of the trees on your land.
(Stephen Fitzgerald, OSU Extension Service)

D2 Farm Pond & Ditch Weed Management
Are aquatic weeds, algae and moss taking over your pond and ditches? Prepare and maintain a healthy pond to make the most of your irrigation season.
(Bob Parker, WSU Extension Service)

D3 Optimize Pasture & Grazing Management
Are you a livestock producer or a grass farmer? Learn how to “properly” manage your pasture or establish a new pasture, and use proper grazing management. Bring your questions.
(Mylen Bohle, OSU Extension Service)

D4 Extending Your Growing Season
You can successfully grow vegetables in central Oregon, even in Bend! Learn about row cover, tunnels and other tricks to being a successful small farm producer.
(Jim Fields, Fields Farm)

Session E (2:30-3:20pm)
E1 Irrigation Management
Want some tips on making “you” a better irrigator? Flood, hand line and wheel line sprinkler systems will be covered. Learn about tools and strategies for improving irrigation practices on your farm.
(Mylen Bohle, OSU Extension Service)

E2 Basic Weed Control
Join this discussion about weed control. Share your concerns and learn how to control your specific weed issues.
(Bob Parker, WSU Extension Service)

E3 Experience talks: Panel of Small Farm Producers
Hear the experts talk about what they are growing on their properties, how they market, and what practices work on small farms.
(Jerre Kosta, Dancing Cow Farm, Prineville
Jim Fields, Fields Farm, Bend
Gary Bishop, Bishop Farms, East Bend)

E4 Dairy and Meat Goat Discussions
What are the possibilities of dairy and meat goat enterprises in Central Oregon? If you are interested in learning more about this industry, sign up for this class.
(Speakers to be announced)

Session F (3:30-4:20pm)
F1 Quality Hay – What is it?
Bring a flake of hay and your lab test (if available). Whether you are in the market to buy or sell, learn how to determine if it is good hay. We will talk about “sensory” quality as well as doing some hands-on examinations.
(Mylen Bohle, OSU Extension Service)

F2 Your Meat or Milk Products for Sale
Become acquainted with the laws that ensure your customers a safe and wholesome product. Learn about proper labeling, processing and packaging. (Speakers to be announced)

F3 Poisonous weeds and your livestock
Did you know that poisonous weeds could be lurking in your pasture? Learn what these weeds look like, how to control them and how they affect your livestock.
(Tim Deboodt, OSU Extension Service)

F4 Create a Wildlife Paradise
You want wildlife? Let me tell you how to create a habit that will welcome mammals, birds, amphibians and reptiles. Realize that there can be trouble in paradise when you invite frogs to sing you to sleep!
(Larry Pecenka, ODFW Habitat Biologist)

Remember, registrations are due no later than March 10th, 2008. See registration information on page 7
Central Oregon Agriculture Calendar

February
21 Drift-Reducing Nozzle & Core Pesticide Training (see article Front Page)
25 Crook County SWCD Land Owner Workshop (see article Page 3)
27 Crook County SWCD Land Owner Workshop (see article Page 3)
28 Hands-on Crop Diagnostics Workshop (see article Front Page & Page 2)
 Weed Forum at Warm Springs (see article Page 2)
29 Camelina Production Workshops (see article Page 3)

March
1 CO Hay Growers Annual Meeting and Forage Information Day (see article Page 3)
10-12 Food Product Development Short Course, 8:00 a.m.—5:00 p.m., Food Innovation Center,
 1207 NW Naito Parkway, Portland, Oregon. For more information contact Debby Yacas,
 Deborah.yacas@oregonstate.edu, or 1-800-823-2357.
15 Living On A Few Acres (see article Pages 7, 8, and 9)
17 USDA Upcoming Closing Dates (see article Page 2)
 Aspen Management (see article Page 6)