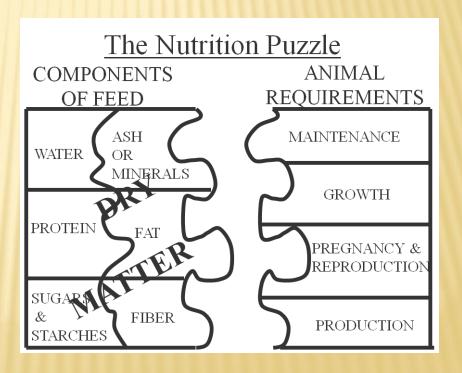

Shelby J. Filley Regional Livestock & Forage Specialist

Proper nutrition at a lower cost


USING A TEST HAY FOR FEEDING LIVESTOCK

OBJECTIVES

Understanding a Hay Analysis Report

Matching Nutrient Supply& Demand

TESTING HAY/FEEDING APPROPRIATELY

- One producer reduced feeding cost by \$38/cow by substituting a lowquality forage (grass seed straw) for 25% of his feed
- Another sold 90 tons of high quality hay determined to be in excess of his needs

- A third reduced the cost per pound gain on weaned calves by adding barley to a forage-based program
- A forth purchased Orchard grass straw, sold alfalfa, and profited \$4,000

OSU FORAGE EVALUATION LABORATORY

Sampling instructions

OSU FORAGE EVALUATION LABORATORY

- × Order form
 - + Beef Cattle
 - + Other Livestock

UNDERSTANDING YOUR FORAGE TEST RESULTS

SAMPLE 27	FORAGE TESTING LABOR	ATORY	MMG HAY (NNE)	1	72458
WALYZED ***			ANALYSIS (
				AS SAMPLED BASIS	DRY MATTER BASI
			% MOISTURE	9.3	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>
	.907		% DRY MATTER	90.7	
	ECEIVED DATE PRINTED STATE CO.	FARM	% CRUDE PROTEIN	10.3	11.3
11/01/00 11/1	5/00 11/18/00 92 00	0000	% AVAILABLE PROTEIN		
			% UNAVAILABLE PROTEIN		
			% ADJUSTED CRUDE PROTEIN	10.3	11.3
			% SOLUBLE PROTEIN		22
			% ACID DETERGENT FIBER	30.7	33.8
			% NEUTRAL DETERGENT FIBER	52.4	57.8
* HOLI	DAY LAB CLOSINGS 0 G 11/28/96 AND 11/29 /25/96 NEW YEAR 5 1/2	/96	% CRUDE FAT		
CHRISTMAS 12	125/96 NEW YEAR 5 1/	197	% NSC	19.0	20.9
COMMENTS:			% T D N	53	58
1. IDN DETER	MINED BY OSU EQUATION DETERMINED USING 1988	N. NET	NET ENERGY (LACTATION) -Mcal/lb.	.54	.60
DAIRY EQU	ATIONS.	1000	NET ENERGY (MAINTENANCE)-Mcsl/lb.	.53	.58
NRC NUTRI	ATIONS. RGIES CONFORM TO THE ENT REQUIREMENTS OF	1767	NET ENERGY (GAIN) -Mcal/lb.	•29	.32
HORSES.			% CALCIUM	.20	.22
			% PHOSPHORUS	.19	.21
	<u>^</u>		% MAGNESIUM	.38	
			% POTASSIUM	1.31	1.45
			% SODIUM	.208	.23
			PPM IRON	482	531
			PPM ZINC	19	21
			PPM COPPER	6	6
			PPM MANGANESE	280	308
	Y		PPM MOLYBDENUM	1.5	1.6
.1 Y	7		% SULFUR	.21	.23
	,		% PROTEIN EQUIV. FROM UREA		
(X)			% PROTEIN EQUIV. FROM AMMONIA		
			% NITRATE ION		
7			% CHLORIDE ION		
			pH		
	ORTHEAST DHIA SUPERVISOR		REL. FEED VALUE		101.0
DRY ROUGHA	SCRIPTION % DM NE		HORSE TON, 2	44	49
		1		.88	. 97

- Many terms/acronyms
- Related to plant components
 - + Cell wall
 - + Cell contents

Lets start with the plant first, then return to the laboratory report

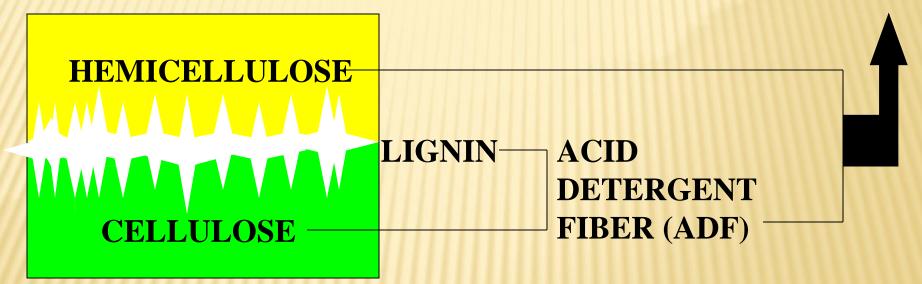
- *Forage Quality is related to physical characteristics of the plant
 - +Components & Morphology

PLANT CELL

PRIMARY WALL

SECONDARY WALL

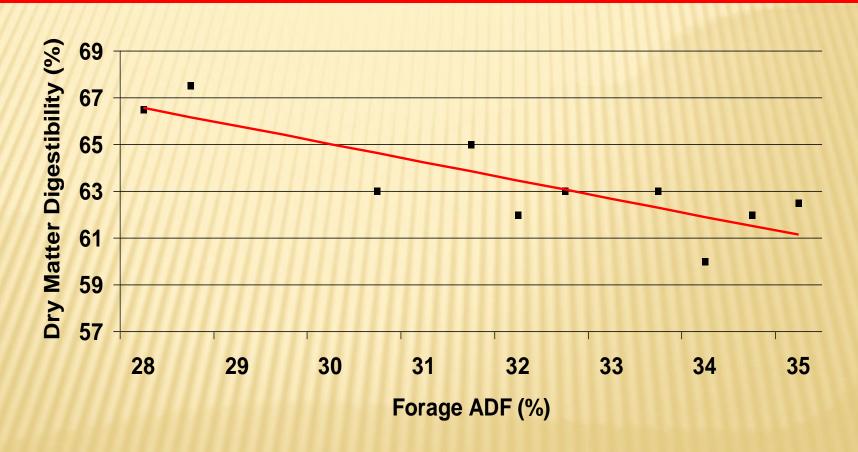
CELL CONTENTS


- •PROTEIN
- SUGARS
- •STARCH
- •PECTINS
- •FATS

CROSS SECTION

INSIDE

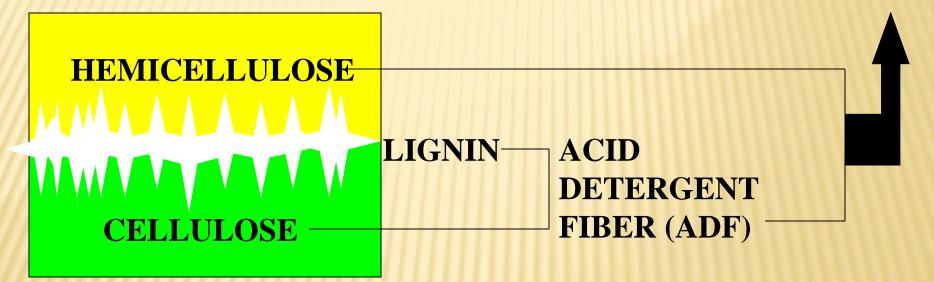
NEUTRAL DETERGENT FIBER (NDF)


SECONDARY WALL

PRIMARY WALL

OUTSIDE

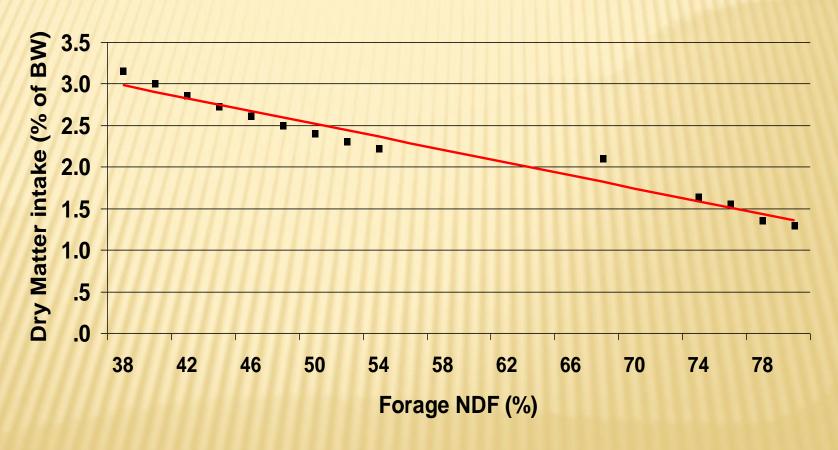
FORAGE ADF AND DRY MATTER DIGESTIBILITY



Adapted from Miller et al. (1991)

INSIDE

NEUTRAL
DETERGENT
FIBER (NDF)


SECONDARY WALL

PRIMARY WALL

OUTSIDE

FORAGE NDF AND DRY MATTER INTAKE

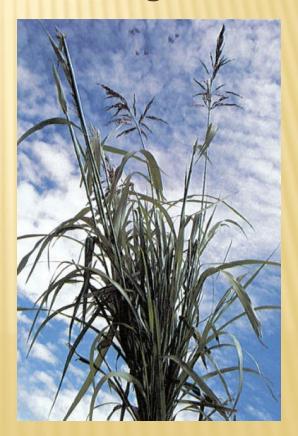
Adapted from Mertens (1985) & Burns et al. (1997)

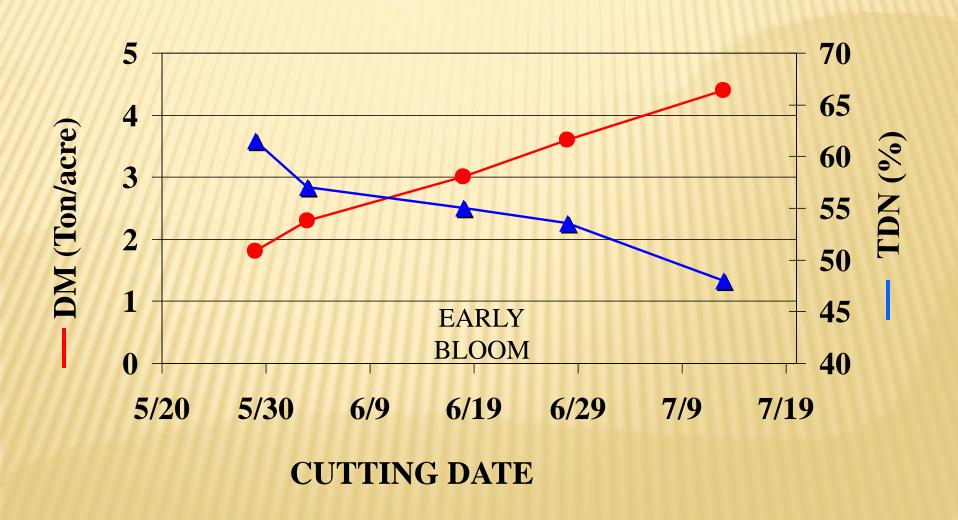
FORAGE VALUE

& PLANT MATURITY

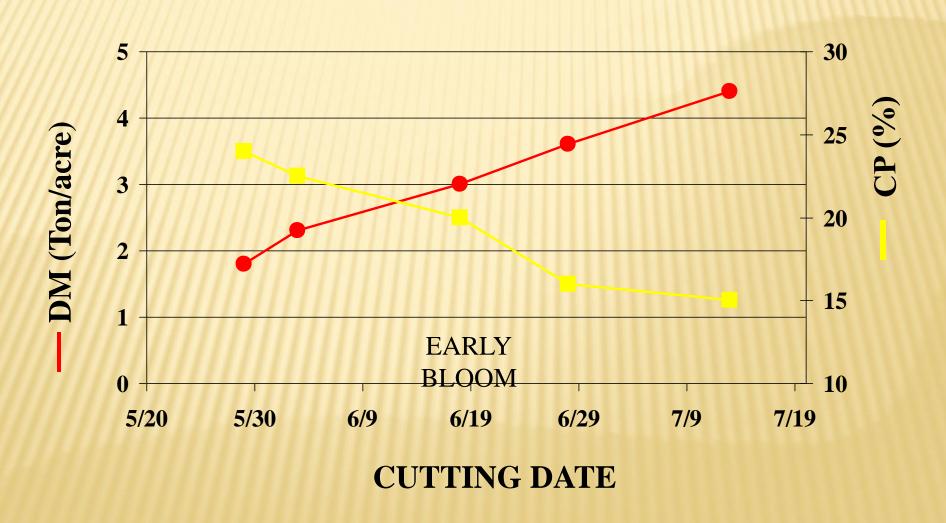
- As plants mature:
 - + Fiber increases:

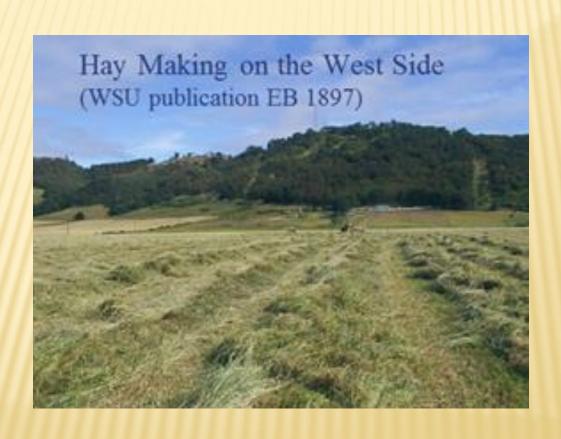
Acid detergent fiber (ADF) & Neutral detergent fiber (NDF)


- + Protein & energy decrease
- Digestibility decreases (ADF factor)
- Feed intake decreases (NDF factor)


FORAGE PLANT CHARACTERISTICS

- Forage Quality
 - + Young, tender growth vs. older, fibrous growth




TRADE-OFF BETWEEN YIELD AND ENERGY

TRADE-OFF BETWEEN YIELD AND PROTEIN

MAKE GOOD HAY OR... WATCH YOUR NEIGHBORING FIELDS FOR GOOD CUTTING PRACTICES

TYPICAL CHEMICAL COMPOSITION OF GRASSES

MATURITY	CP	ADF	NDF
VEG-BOOT	>18	<33	<55
BOOT-EARLY HEAD	13-18	34-38	55-60
HEAD-MILK	8-12	39-41	61-65
DOUGH	<8	>41	>65

TYPICAL CHEMICAL COMPOSITION OF ALFALFA

MATURITY	CP	ADF	NDF
Bud-First Flower	>19	<31	<40
F.F mid bloom	17-19	31-35	40-46
Mid-full bloom	13-16	36-41	46-51
Post bloom	<13	>41	>51

GRASS/CLOVER HAY AND HALAGE

				1111111111
	LOW-	MID-	HIGH-	HAYLAGE
	PROTEIN	PROTEIN	PROTEIN	(1 SAMPLE)
	(5-8.9%CP)	(9-11.9%CP)	(12-16%CP)	(I DILIVII EE)
	(3-0.9 /OCF)	(9-11.9 /oCF)	(12-1070CF)	
CRUDE				
PROTEIN (%)	<i>(</i> 0	0.0	10 F	0.0
110121((/0)	6.9	9.9	12.5	9.0
ACID				
ACID				
DETERGENT				
FIBER (%)	40	20	27	441
	42	39	37	44.1
NEUTRAL				
DETERGENT				
FIBER (%)	"	61	57	<i>(</i> 5 0
	66	64	57	65.8
TOTAL				
_				
DIGESTIBLE				
NUTRIENTS	56	50	60	57
(%)	56	58	60	57

ALFALFA BASED FORAGES

	ALFALFA/ GRASS MIX	ALFALFA	ALFALFA HAYLAGE
CRUDE PROTEIN (%)	17 - 20	16- 20	20
ACID DETERGENT FIBER (%)	31 -38	34-43	41
NEUTRAL DETERGENT FIBER (%)	43 - 50	41-53	50
TOTAL DIGESTIBLE NUTRIENTS (%)	59 - 61	56-60	57

SAMPLE	2.7	
ANALYZED	6	
DW-		

ORAGE	TESTING	LABORATORY	

.907

DATE SAMPLED	LAS RECEIVED	DATE PRINTED			
11/01/00	11/15/00	11/18/00	92	00	0000

* HOLIDAY LAB CLOSINGS *
THANKSGIVING 11/28/96 AND 11/29/96
CHRISTMAS 12/25/96 NEW YEAR S 1/1/97

COMMENTS:

- 1. TON DETERMINED BY OSU EQUATION. NET ENERGIES DETERMINED USING 1988 NRC DAIRY EQUATIONS.
 2. HORSE ENERGIES CONFORM TO THE 1989 NRC NUTRIENT REQUIREMENTS OF HORSES.

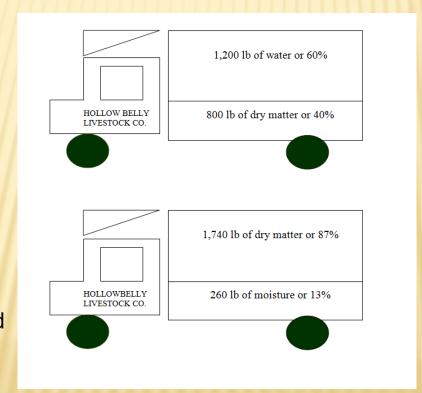
	FOR NORTHEAST DHIA SUPERVI			
KIND	DESCRIPTION	% DM	NEI	% PROTON
1	DRY ROUGHAGE	91	60	11

5/4	WIFE DESCRIPTION	1800 CODE	DO DWY
MMG HAY	(NNE)	104	724587

ANG HAT TRAET		72.501
ANALYSIS	QESIII TS	
COMPONENTS	AS SAMPLED BASIS	DRY MATTER BASIS
% MOISTURE	9.3	(((((((((((((((((((((((((((((((((((((((
% DRY MATTER	90.7	
% CRUDE PROTEIN	10.3	11.3
% AVAILABLE PROTEIN		
% UNAVAILABLE PROTEIN		
% ADJUSTED CRUDE PROTEIN	10.3	11.3
% SOLUBLE PROTEIN	-	22
% ACID DETERGENT FIBER	30.7	33.8
% NEUTRAL DETERGENT FIBER	52.4	57.8
% CRUDE FAT		
% NSC	19.0	20.9
% T D N	53	58
NET ENERGY (LACTATION) -Mcal/lb.	.54	•60
NET ENERGY (MAINTENANCE)-Mcel/lb.	•53	.58
NET ENERGY (GAIN) -Mcal/b.	-29	, 32
% CALCIUM	•20	•22
% PHOSPHORUS	.19	•21
% MAGNESIUM	.38	42
% POTASSIUM	1.31	1.45
% SQDIUM	+208	.230
PPM IRON	482	531
PPM ZINC	19	21
PPM COPPER	6	6
PPM MANGANESE	280	308
PPM MOLYBDENUM	1.5	1.6
% SULFUR	.21	.23
% PROTEIN EQUIV. FROM UREA		
% PROTEIN EQUIV. FROM AMMONIA		
% NITRATE ION		
% CHLORIDE ION		
pH		
REL. FEED VALUE		101.0
HORSE TON, %	44	49
HORSE DE, MCAL/LB.	.88	.97

Moisture = water

Dry Matter = total - water


DM = protein, fats, carbohydrates, ash

For example:

1 ton load of feed

Differing %DM

Differs in amount of feed

or baleage)
on a 100% DM basis

SAMPLE 27

FORAGE TESTING LABORATORY

.907

DATE SAMPLED	LAS RECEIVED	DATE PRINTED			
11/01/00	11/15/00	11/18/00	92	00	0600

HOLIDAY LAB CLOSINGS *
THANKSGIVING 11/28/96 AND 11/29/96
CHRISTMAS 12/25/96 NEW YEAR'S 1/1/97

COMMENTS:

- . TON DETERMINED BY OSU EQUATION. NET ENERGIES DETERMINED USING 1988 NRC
- 2. HORSE ENERGIES CONFORM TO THE 1989 NRC NUTRIENT REQUIREMENTS OF

EAAMPLE

		FOR NORTHEAST	DHIA	SUPERVI			
KIND	$\overline{}$	DESCRIPTION			% DM	NEI	% PROTON
1	DRY	ROUGHAGE			91	60	11

MMG HAY (NNE)	1	04 724587					
ANALYSIS RESULTS							
COMPONENTS	AS SAMPLED BASIS	DRY MATTER BASIS					
% MOISTURE	9.3						
% DRY MATTER	90.7	///////////////////////////////////////					
% CRUDE PROTEIN	10.3	11.3					
% AVAILABLE PROTEIN							
% UNAVAILABLE PROTEIN							
% ADJUSTED CRUDE PROTEIN	10.3	11.3					
% SOLUBLE PROTEIN	-	22					
% ACID DETERGENT FIBER	30.7	33.8					
% NEUTRAL DETERGENT FIBER	52.4	57.8					
% CRUDE FAT							
% NSC	19.0	20.9					
% T D N	53	58					
NET ENERGY (LACTATION) -Moal/lb.	.54	.60					
NET ENERGY (MAINTENANCE)-Mcsi/lb.	•53	.58					
NET ENERGY (GAIN) -Mcal/lb.	•29	.32					
% CALCIUM	•20	•22					
% PHOSPHORUS	.19	.21					
% MAGNESIUM	.38	42					
% POTASSIUM	1.31	1.45					
% SODIUM	.208	.230					
PPM IRON	482	531					
PPM ZINC	19	21					
PPM COPPER	6	6					
PPM MANGANESE	280	308					
PPM MOLYBDENUM	1.5	1.6					
% SULFUR	.21	.23					
% PROTEIN EQUIV. FROM UREA							
% PROTEIN EQUIV. FROM AMMONIA							
% NITRATE ION							
% CHLORIDE ION							
pH							
REL. FEED VALUE		101.0					
HORSE TON, %	44	49					
HORSE DE, MCAL/LB.	.88	.97					

Crude Protein $CP = \%N \times 6.25$

Acid Detergent Fiber (ADF; cellulose & lignin) est. digestibility

Neutral Detergent Fiber (NDF; cellulose, hemicellulose, & lignin) est. intake

Crude Fat (ether extract, EE) Usually ~ 3%

Non Structural Carbohydrates (NSC)

SAMPLE 27

FORAGE TESTING LABORATORY

.907

DATE SAMPLED	LAS RECEIVED	DATE PRINTED			
11/01/00	11/15/00	11/18/00	92	00	0600

* HOLIDAY LAB CLOSINGS *
THANKSGIVING 11/28/96 AND 11/29/96
CHRISTMAS 12/25/96 NEW YEAR S 1/1/97

COMMENTS:

- . TON DETERMINED BY OSU EQUATION. NET ENERGIES DETERMINED USING 1988 NRC
- DAIRY EQUATIONS.

 HORSE ENERGIES CONFORM TO THE 1989
 NRC NUTRIENT REQUIREMENTS OF

AMPLI	>
EIL	

		FOR NORTHEAST	DHIA			
KIND		DESCRIPTION		% DM	NEI	% PROTON
1	DRY	ROUGHAGE		91	60	11

	MMG HAY (NNE)	1	04	724587
ŀ	ANALYSIS			
ŀ	COMPONENTS	AS SAMPLED BASIS	DAY	MATTER BASIS
ļ	% MOISTURE	9.3	$/\!/\!/$	<i>71////////</i> ////////////////////////////
Į	% DRY MATTER	90.7	///	
۱	% CRUDE PROTEIN	10.3	_	11.3
l	% AVAILABLE PROTEIN		_	
I	% UNAVAILABLE PROTEIN		L	
I	% ADJUSTED CRUDE PROTEIN	10.3		11.3
I	% SOLUBLE PROTEIN	-		22
I	% ACID DETERGENT FIBER	30.7		33.8
Ì	% NEUTRAL DETERGENT FIBER	52.4		57.8
	% CRUDE FAT			
	% NSC	19.0		20.9
I	%TDN	53		58
Ì	NET ENERGY (LACTATION) -Mcal/lb.	.54		.60
Ì	NET ENERGY (MAINTENANCE)-Mcsl/lb.	.53	П	.58
Ì	NET ENERGY (GAIN) -Mcal/lb.	.29		.32
Ì	% CALCIUM	.20		•22
Ì	% PHOSPHORUS	.19		.21
Ì	% MAGNESIUM	.38		42
Ì	% POTASSIUM	1.31		1.45
I	% SODIUM	.208		.230
I	PPM IRON	482		531
l	PPM ZINC	19		21
	PPM COPPER	6	T	6
	PPM MANGANESE	280		308
	PPM MOLYBOENUM	1.5		1.6
	% SULFUR	.21		.23
	% PROTEIN EQUIV. FROM UREA			
	% PROTEIN EQUIV. FROM AMMONIA			
	% NITRATE ION			
	% CHLORIDE ION			
	pH			
ı	REL. FEED VALUE			101.0
	HORSE TON, 2	44	T	49
1	HORSE DE, MCAL/LB.	.88	T	.97
			T	

Total Digestible Nutrients

(TDN; = sum of nutrients x digestibility

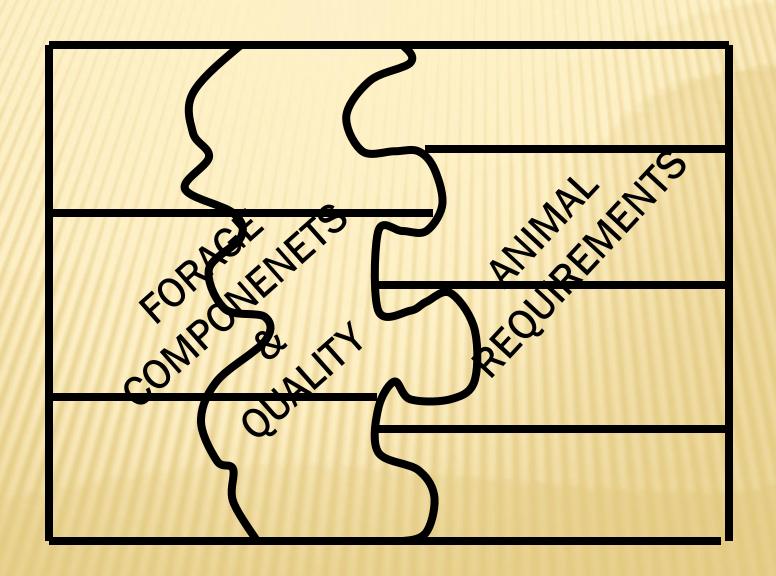
Net Energy (NE)

- = Gross Energy Losses
 - Heat of digestion
 - Gases
 - Urine
 - Feces

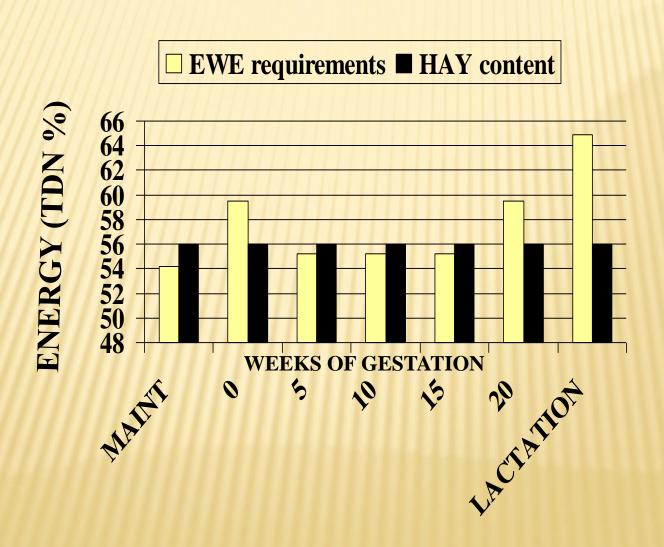
Minerals: macro & micro

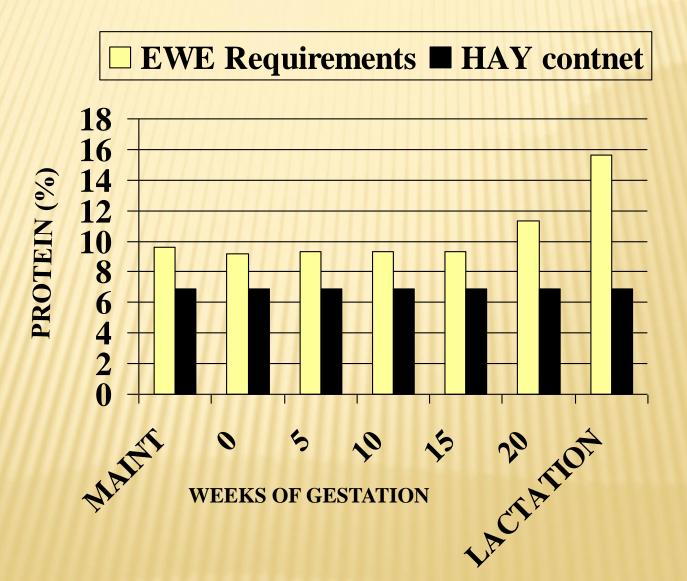
Horses - less efficient than ruminants; have different values for energy

USDA AGRICULTURAL MARKETING SERVICE ALFALFA & ALFALFA GRASS HAY TESTING GUIDELINES


Grade	ADF (%)	NDF (%)	RFV	TDN 100 (%)	TDN 90 (%)	CP (%)
Supreme	<27	<34	>185	>62	55.9	>22
Premium	27-29	34-36	170- 185	60-62	54.5- 55.9	20-22
Good	29-32	36-40	150- 170	58-60	52 . 5- 54 . 5	18-20
Fair	32-35	40-44	130- 150	56-58	50 . 5- 52 . 5	16-18
Utility ^{RFV: R}	elativ 3 5 eed	d Vald4	<130	<56	<50.5	<16

IMPORTANCE OF KNOWING FORAGE QUALITY


- Meet animal nutrient requirements
- *Accurate prediction of livestock production
- Forage marketing


THE NUTRITION PUZZLE

Energy content of grass hay and energy requirements of ewes.

Protein content of grass hay and protein requirements of ewes

NUTRIENT REQUIREMENTS OF SELECTED LIVESTOCK... COMPARE TO HAY

Animal	Weight (lb)	gain (lb/day)	protein (%)	TDN (energy; %)
Pregnant yearling heifer	830 lb	1.3	8.6	58.8
Dry pregnant mature cow	1100 lb	0.9	7.8	53.1
Lactating yearling heifer	830	.4	10.9	63.8
Lactating cow	1100	0	9.7	56.6
Pregnant ewe lamb	121	0.35	11.8	63
Pregnant Ewe	154	0.4	10.7	59
Ewe with twins	154	-0.13	15.0	65
Ewe with singles	154	-0.06	13.4	65
Medium-frame steer calves	500	1	9.5	58.5
Medium-frame steer calves	500 (NR)	3 C.Sheen 198	14.4 35 ; NRC Beef	85.0 1984)
J	(1417)	o olicob Toc	o, ivido beel	±55∓ <i>j</i> .

REQUIREMENTS FOR DIFFERENT CLASSES OF HORSE

Horse	DE Mcal/lb	CONC. (%)	HAY (%)	Protein (%)
Maintenance	0.9	0	100	8
Pregnant	1.0 – 1.1	20-30	70-80	10 – 10.6
Lactating	1.2 – 1.15	35 - 50	50-65	11-13.2
Working	1.15 – 1.3	35-65	35-65	9.8 – 11.4
Growing	1.15 - 1.4	35 - 70	30 - 65	10.4 – 14.5

Adapted from NRC Nutrient Requirements of Horses, 1989

HORSE HAY

- Sugar Content in Feed & Forage Affects Horses' Health
- × CSU 01818
- No "Low Carb" hay
- Low sugar hay
- × <10% sugars as WSC</p>
 (Water Soluble Carbohydrates)

- Potassium (K)
 - + Watch fertilizer practices
 - Species of grasses and legumes
 - + All are okay
 - + Feed appropriately
 - × Nutrients to match activity

RATION BALANCING INFORMATION

http://extension.oregonstate.edu/douglas/information-livestock-forages-production

Animal Nutrient
Requirements
Forage Value
Evaluating Feeds
Minerals and Vitamins
Ration Balancing
Supplements

Body Condition

Heifer Nutrition and Development EM 8883-E • December 2004

Beef Cattle Nutrition Workbook

- Beef workbook has examples for balancing rations that work for other livestock
- Nutrient Requirements for Sheep, Goats, Horses, and Dairy Cows
- Mineral Assessments

PEARSON SQUARE METHOD

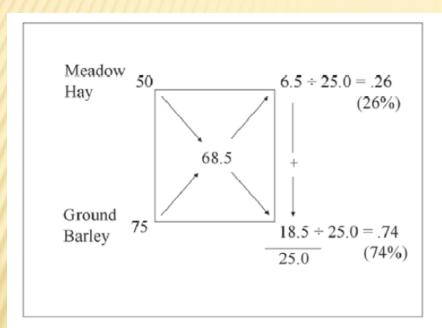
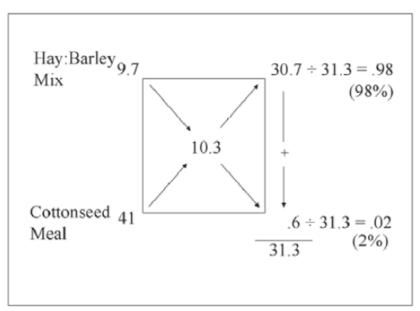
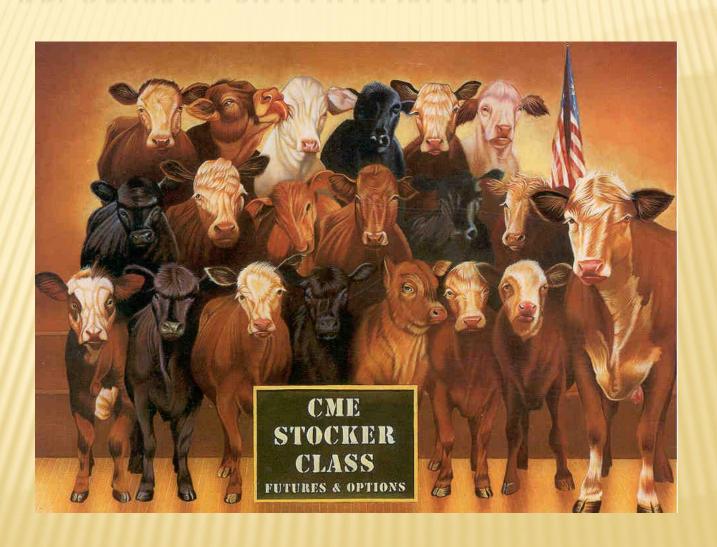


Figure 1. Balancing for TDN using a Pearson Square.




Figure 2. Balancing for CP using a Pearson Square.

OSU Cow-Culator - http://beefcattle.ans.oregonstate.edu/html/forage/Forage.htm

Hire Nutritionist – it pays to have proper nutrition

Bagged feeds - expensive; follow bag instructions or risk unbalanced rations

NEXT STEPS... TAKE AN ANIMAL NUTRITION CLASS

