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Operations research (OR) is concerned
with scientifically deciding how to best

design and operate people–machine systems,
usually under conditions requiring the
allocation of scarce resources.1

     This publication, one of a series, is
offered to supervisors, lead people, middle
managers, and anyone who has responsibility
for operations planning in manufacturing
facilities or corporate planning over multiple
facilities. Practical examples are geared to
the wood products industry, although
managers and planners in other industries
can learn OR techniques through this series.

                     1Operations Research Society of America

Discrete event simulation is a powerful tool to help under-
stand and manage complex manufacturing systems such
as those found in the forest products industry. A system is

defined as a collection of entities, usually people and machines,
that act and interact toward the accomplish-
ment of some logical end (Law and Kelton
1991).

Simulation is a powerful analytical tool
for designing or experimenting with com-
plex systems. Simulation has been defined
as the process of designing a model of a
real system and conducting experiments
with this model either to understand the
system’s behavior or to evaluate various
strategies for operating it (Pegden et al.
1995). When we talk about real systems,
we make the distinction between the real
system (existing or planned) and the simu-
lation model of the real system.

Simulation is an important tool when the
risk involved with modeling is low com-
pared to trial and error with the real system.
For example, suppose a new piece of
machinery is going to be inserted into an established production
line. Management can buy the new machine and put it into produc-
tion, checking later to see whether the new machine actually does
increase productivity, variety, quality, or whatever the goals were
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and, of course, increase the profit. If the system with the new
machine does not meet the goals established, then management
could remove the machine and lay off the employees hired to
operate it.

A better approach begins with collecting data on current mill
operations. Some data probably are already available; e.g., on the
mix of products flowing through the mill, the grade or specifica-
tion of different products, machine cycle times, and downtime for
individual pieces of equipment.

Historical data can be very important and can greatly shorten the
duration of data collection for simulations. One note of caution:
historical data are valid only if nothing has changed in either the
operations or the material mix as products flow through the manu-
facturing process. If you replaced most of the primary breakdown
equipment 6 months ago in the green end of the sawmill, then data
more than 6 months old won’t reflect the new—and hopefully
improved—process.

Using the collected historical data, we construct theoretical
probability distributions to model the proposed new machine
processes; then, we insert this into our model of the current system.
(In a later publication, we will talk about how to choose the best
probability distributions to model your processes.)

By running the model, we can observe the impact of the pro-
posed new machine on the overall manufacturing system. If the
machine works well in the modeled system, we can with some
confidence believe that the actual machine would work well in the
actual manufacturing system. But, if the proposed machine causes
much disruption in the model, then we also can expect that the real
machine would disrupt the real system. Based on this information,
management can make decisions without disrupting the actual
system—without removing a real machine or laying off employees.

Use simulation when:
• Experimentation with the real system is infeasible, disruptive,

and/or too expensive
• Other mathematical or analytical methods won’t work
• You need to examine systems as they would operate over a

given time frame
• You want to compare alternative proposed system designs, or

alternative operating policies for a single system, to see which
best meets the specified requirements

One of the most
powerful features...
of simulation is its
ability to model
random behavior or
variation.
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Simulation Model Characteristics
Simulation models are:

• Static or dynamic, and
• Deterministic or stochastic, and
• Continuous or discrete

Static and Dynamic Simulations
A static model represents a system at a particular time. One of

the most common types of static simulation, Monte Carlo simula-
tion, uses random numbers to solve (usually) stochastic problems,
and the passage of time plays no role. The object is to repeatedly
reconstruct the situation in variant forms, based on events and
values that turn up each time.

A dynamic simulation model represents a system as it evolves
over time; for example, simulating a computer-numerically-
controlled (CNC) router for a 40-hour work week (Law and Kelton
1991).

Deterministic and Stochastic Simulations
A deterministic simulation model assumes no variability in

model parameters and, therefore, contains no random variables. If
a deterministic model is run with the same input values, it will
always calculate the same output values. Examples of deterministic
simulation models developed for the forest products industry are
LUMGRAFS, for examining the financial feasibility of producing
different proprietary grades (Reeb and Massey 1996), and ROMI-
RIP, for examining processing scenarios in rough mills (Gatchell et
al. 1999). Howard (1988) used a deterministic simulation model to
estimate profits from sawing competitively bid timber.

Deterministic simulation models obviously can be useful. How-
ever, most manufacturing processes have random or unpredictable
variables in their environment or components; then, stochastic
modeling is used to simulate the system in question (Harrell et al.
2000, Pegden et al. 1995, Law and Kelton 1991, Pritsker 1986,
Shannon 1975). One of the most powerful features of simulation is
its ability to model random behavior or variation. Interdependen-
cies and variability, or chance, characterize almost all human-made
systems: operation times, machine cycles, reject rates, arrival
times, downtimes, employee activities, etc. These characteristics
make complex systems difficult to study, analyze, and predict
(Harrell et al. 2000).
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A stochastic simulation model contains one or more random
variables to describe processes in the system being studied. This is
an important point to remember because output data of a stochastic
simulation are themselves random and therefore only estimates of
the true characteristics of the model. Using a deterministic model,
the result of a single simulation run is an exact measure of the
performance of the model, but using a stochastic simulation,
multiple runs are necessary, and even then the results measured
across those replications provide only an estimate of the expected
performance of the model and system being studied. We will
discuss this in much more detail in a later publication in this series.

Continuous and Discrete Simulations
In a continuous simulation, state variables change continuously.

For example, in the flow of a liquid through a pipe, flow of water
through a canal, or flight of an airplane, the state variables of
position and velocity change continuously with respect to each
other. During a discrete simulation, state variables change only at a
countable (or finite) number of points in time. For example, grad-
ing lumber in a sawmill is discrete. The number of graded boards
changes only after a board reaches a grader and is graded,
trimmed, and sorted.

Most manufacturing systems are modeled as dynamic and dis-
crete event simulations. Most are stochastic in nature and use ran-
dom variables to model interarrival times,* queues, processes, etc.

The manufacturing sector increasingly uses discrete event
simulation in a wide variety of industries including automotive
(Jayaraman and Gunal 1997), military (Hill et al. 2001), and
electronics (Farahmand 2000).

Discrete event simulations are used to analyze overall manufac-
turing environments, specific issues, and individual measures of
performance. Manufacturing environments that can be studied
include adding new equipment, upgrading existing machines,
changing factory layout, or building a new factory area. Each of
those changes will lead to changes in certain measures of perfor-
mance for the system. Examples of measures of performance are
work-in-process, part lead times, part throughput, and machine
utilization.

In manufacturing environments it is important for managers and
engineers to get a systemwide view of the effect local changes will

* Interarrival time is the interval between the points in time at which
items arrive at a certain location.

Most manufacturing
systems...
are modeled as
dynamic and discrete
event simulations.
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have on the system. If a change is made at a particular location, its
impact on the process at this location may be fairly predictable, but
without simulation it may be impossible to determine the impact of
the change on the performance of the overall system (Law and
Kelton 1991). For example, a bottleneck at a machine center
causes too much work-in-process inventory to accumulate at this
location. The boss decides to add another machine to eliminate the
bottleneck. However, that additional machine’s throughput will
have an impact on processes that follow. In many cases, new
bottlenecks will occur at downstream processes that were either
balanced or waiting for product before the new machine was
installed. Simulation is a way to look at all the changes and their
effects on the system without disrupting the current system.

Here is another example of the importance of taking a systems
view. In a manufacturing cell at an Oregon firm, the output of eight
shaping machines flowed downstream to a single boring and
sanding machine which, not surprisingly, was the bottleneck for
the cell. The simulation model evaluated “obvious” solutions: add
a second boring and sanding machine or a third shift on the single
machine. However, the simulation found that neither greatly
improved throughput. It turned out that the primary cause of the
bottleneck was not equipment limitations but the fact that standard
procedures called for the operator to grade product before loading
the machine. Although grading was very fast, a simulation that had
the cell using offline grading (i.e., while the machine was running,
or grading done by another operator) resulted in far greater
throughput than the far more expensive options of adding a second
machine or a third shift.

Simulations in the Forest Products Industry
Simulations have been used in the forest products industry to

help improve all aspects of a company, from production to market-
ing (de Kluyver and McNally 1980). Simulations have been used
to study various veneer slicing procedures (Schmoldt et al. 1996),
furniture mill operations (Kyle and Ludka 2000, Wiedenbeck
1992), and sawmill processes (Adams 1984 and 1988, Aune 1974,
Hall and Jewett 1988, Kempthorne 1978, Kline et al. 1992, Lin et
al. 1995, Pennick 1969, Reeb 2003, Stiess 1997, Wagner et al.
1989, Wagner and Taylor 1983). These simulation models were
developed using general-purpose programming languages or
special-purpose simulation languages.

Simulations
have been
used...
in the forest
products
industry to help
improve all
aspects of a
company, from
production to
marketing.
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General-purpose Languages, Special-purpose Simulation
Languages, and Simulators

Simulation models are programmed using general-purpose
computer languages, special-purpose simulation languages, and
simulators.

General-purpose computer languages, such as FORTRAN, C,
BASIC, and PASCAL, are designed to solve a broad class of
problems, not just simulations (Harrell et al. 2000, Shannon 1975).
General-purpose languages were the first computer languages used
to develop simulation models. Advanced programming skills in a
specific language, and a lot of time, are necessary to develop
simulations that can model complex manufacturing systems. The
models often are unique to the system being modeled, so when a
new simulation model is started, much of the earlier model cannot
be used.

Special-purpose simulation languages, such as SLAM, SIMAN,
and GPSS, have characteristics that make them more convenient—
i.e., they require less programming—to use for simulating systems
(Pegden et al. 1995, Stahl 1990, Pritsker 1986). They are designed
to solve a particular class or type of problem (Shannon 1975). They
can be general in nature but have special features for specific types
of applications. For example, SLAM II has manufacturing modules
for conveyors and automated guided vehicles. Special-purpose
simulation languages are designed so the user can model almost any
type of system regardless of its operating procedures or control
logic. Random number generation, ability to call and use different
probability distributions, modeling elements, and other characteris-
tics make simulation languages ideal for modeling systems.

Simulators are a relatively new type of simulation software that
allows one to simulate a system with little or no programming. The
simulated system is built using a graphical interface with drop-
down menus and icons.

An advantage of using a simulator instead of a simulation
language is that developing the model can take considerably less
time. A disadvantage of using some simulators is their limited
ability: they can model only those system configurations allowed
by their standard features. Other simulators allow the user to write
commands to model complex decision logic while still using
menus and graphics to develop most of the model (Law and Kelton
1991).

Another advantage to simulators is that those not familiar with
simulation but familiar with the system being studied can look at

Good simulation
software...
will contain
good statistical
capabilities so
that sources of
system random-
ness can be
modeled using
theoretical
probability
distributions.
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the animated model and help validate how well the model mimics
the real system. Many special-purpose simulation languages also
employ an animation package that can greatly help in verifying
(ensuring that the model behaves the way the modeler intended)
and validating (ensuring that the
model is a true representation of the
system being modeled) simulation
models.

Good simulation software will
contain good statistical capabilities
so that sources of system random-
ness (interarrival times, processing
times, downtimes, etc.) can be
modeled using theoretical proba-
bility distributions. The software
will contain a wide variety of stan-
dard distributions from which to
choose and a multiple-stream
pseudorandom number generator.*
In addition, you should be able to
make independent replications of the
model automatically, using different
pseudorandom numbers but starting
in the same initial state each time.
You should be able to specify a
warmup period, and the software
should have the statistical abilities to
measure performance. These topics
will be covered in more detail in
later publications in this series.

In a 1995 survey (Cochran et al.), modelers were asked what
type of simulation programs they most often used (Table 1).

*We call these numbers pseudorandom because they behave as random
numbers but in fact are not. The pseudorandom number generator pro-
duces a flow of numbers that are samples (observations, draws, or realiza-
tions) from a continuous, uniform distribution between 0 and 1 and are
independent from one another. All other observations from other proba-
bility distributions that drive simulations start with random numbers. If
you wish to experiment with the simulation, you must be able to replicate
those same numbers; therefore, they are not truly random. We will spend
more time talking about this in a later publication when we discuss how
to use other probability distributions to drive your simulation models.

Table 1. Preferred tools of simulation modelers

       Users
  preferring

Type of language   (%)

General-purpose languages
C 28
FORTRAN 27
PASCAL 7
BASIC 6
LISP 4
Other 10
None 18

General-purpose simulation languages
SLAM II 28
SIMAN 28
GPSS 11
SIMSCRIPT 6
Other 11
None 16

Special-purpose simulators
PROMODEL 14
SIMFACTORY 8
FACTOR 4
WITNESS 2
Other 12
None 60
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Any of the three types of software has pluses and minuses. Most
simulation software companies offer a free or relatively inexpen-
sive demonstration (“demo”) version of their product. However,
the demo version typically is limited in the size of the model you

can construct with it. Try out several
of these before deciding what type of
simulation software to purchase. Most
industrial versions of simulation
software cost thousands of dollars, so
make sure you are comfortable with a
product before purchasing it.

Uses
Simulation studies are used for

many types of activity. The Cochran et
al. survey examined the major uses for
simulation in various industries in the
United States (Table 2).

Simulation studies can be expen-
sive. Data collection and model
formulation can be very time consum-
ing, depending on the complexity of
the system being studied.

However, without good, representa-
tive data and good problem formulation, you could make erroneous
(and expensive) conclusions about the system being studied. The
Cochran et al. survey examined the time it took to complete simu-
lation studies for various industries (Table 3). On average, 76 per-
cent of the simulation studies took more than 1 month to complete;
29 percent of the studies took more than 6 months to complete.

Time spent on simulation studies has been broken into several
categories: formulating the problem, collecting and analyzing
current and historical data, developing computer models, and
implementing solutions. Surveys in 1970 and 1995 showed most of

the time was
spent on
developing the
computer
model (Table
4). Maybe this
shouldn’t
surprise us,

Table 2. Major uses for simulation in various U.S. industries

Approximate
percentage

of simulation
Project goal studies

Design (facility design, system development) 22

Research (product development, industry
modeling) 21

Scheduling (work-flow analysis, priorities,
due dates) 19

Planning (forecasting, analysis of market
strategies, predict consumer behavior) 17

Assignments and allocations (personnel
analysis and scheduling, resource allocation) 17

Other (e.g., testing scientific theory, studying
health care systems, modeling weapon systems,
analyzing data)    4

Table 3. Time to complete a simulation experiment

Less than 1 week 1 to 3 to More than
1 week to 1 month 3 months 6 months 6 months

Minimum time 49% 25% 13% 6% 7%

Average time 4% 20% 31% 16% 29%

Maximum time 0% 4% 15% 16% 65%
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since most simulation modelers are probably computer science or
engineering majors who enjoy working with computers.

You should expect to spend 45 to 50 percent of your time on
problem formulation and
on collecting and analyz-
ing empirical and histori-
cal data, and you should
spend at least 25 percent
of the time implementing
the results. With high-
speed, cheap computing
and sophisticated simula-
tion software, you should
be spending less than a
third of the time develop-
ing the computer model.
We believe the reason
respondents to the 1995
survey spent 55 percent of the time developing computer models is
that they are comfortable with and enjoy working with computers.

Shannon (1975) noted that only a very small percent of project
time was spent implementing the findings. He argued that if the
study was important enough to do, then it was important to spend
more time on interpreting and implementing the results. Even
today, simulation is too often thought of, by those responsible for
modeling, as a computer problem rather than as a tool for creating
and implementing solutions for real-world problems.

Projects initially can cost more when using simulation, espe-
cially during the
design phase of the
project (Harrell et
al. 2000). However,
the overall cost of
the project often
can be less because
the costs of imple-
mentation and
operation are less
when simulation is
used (Figure 1).

Table 4. Time spent on phases of simulation studies

    Percentage of total project time

Actual Actual
Phase 19701 19952 Recommended3

Formulating the problem 25 14 25

Collecting and analyzing data 25 15 20

Developing the computer model 40 55 30

Implementing solutions 10 16 25
1Gershefski 1970
2Several categories are combined (Cochran et al. 1995)
3Shannon 1975.

Figure 1. Comparison of cumulative system costs with and without simulation
(Harrell et al. 2000).
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A Summary and a Look Ahead
Simulation is one of the most used operations research (OR)

methods in the world. This overview of simulation hopefully gave
the reader some idea why it is considered such an important tool
for many businesses. It’s not just computer programming.

Future reports in this series will discuss:
• Data collection  Often, during the data collection or early

modeling stages, much useful information about the system is
uncovered—sometimes making it unnecessary to complete the
computer programming phase of the study.

• Teamwork  It takes teamwork from the operators through upper
management to assure that complex simulation studies succeed.

• Analysis and implementation  Ravindran et al. (1987) describe
simulation as one of the easiest tools of management science
to use but probably one of the most difficult to apply correctly
and perhaps the most difficult from which to draw accurate
conclusions.

In later publications, we will discuss how to work through some
of these difficulties, and we’ll discover how useful simulation can
be to those in forest products manufacturing.
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