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Part 7: Variables Control Charts

Our focus for the prior publications in this series has been on introducing you to 
Statistical Process Control (SPC)—what it is, how and why it works, and how to use 
various tools to determine where to focus initial efforts to use SPC in your company.

SPC is most effective when focused on a few key areas as opposed to measuring any-
thing and everything. With that in mind, we described how to:

•	 Use Pareto analysis and check sheets to select projects (Part 3)
•	 Construct flowcharts to build consensus on the steps involved and help define where 

quality problems might be occurring (Part 4)
•	 Create cause-and-effect diagrams to identify potential causes of a problem (Part 5)
•	 Design experiments to hone in on the true cause of the problem (Part 6)
Now, in Part 7, we describe the primary SPC tool: control charts. Assuming our exper-

iment helped identify target values for key processes, we are ready to focus on day-to-day 
control and monitoring to ensure the process remains stable and predictable over time.

It is important, however, to not lose sight of the primary goal: Improve quality, and in 
so doing, improve customer satisfaction and the company’s profitability.

How can we be sure our process stays stable 
through time?

In an example that continues throughout this series, a quality improvement team from 
XYZ Forest Products Inc. (a fictional company) determined that size out of specification 
for wooden handles (hereafter called out-of-spec handles) was the most frequent and 
costly quality problem. The team identified the process steps where problems may occur, 
brainstormed potential causes, and conducted an experiment to determine how specific 
process variables (wood moisture content, species, and tooling) influenced the problem.

Assuming the team makes a process change, they next need to (1) verify that the 
change actually produces the desired beneficial result and (2) ensure the process remains 
stable through time. In other words, they need to sustain the gains they’ve made.
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The team’s experiment revealed that moisture content as well as an interaction 
between wood species and tooling affect the number of out-of-spec handles. They 
identified two options for process change:

1.	 If the company can tightly control and monitor moisture content and prefers not 
to change tooling each time they switch between birch and poplar, both species 
should be machined at 6% moisture content using the new tooling.

2.	 If the company can’t tightly control moisture content and changing tooling 
between species is feasible, then the existing tooling should be used with birch 
(regardless of moisture content) and the new tooling should be used for poplar 
(regardless of moisture content).

Let’s assume the team chooses the first option, which requires tightly controlling and 
monitoring moisture content. Simply checking moisture content periodically might do 
the trick. However, if they see variation (and given the natural variability of wood, we 
know they will), how do they know how much variability is normal and acceptable? At 
what point should they stop the process and look for a problem? When should they let 
things run? A control chart is precisely the tool to use to answer these questions.

Control charts: A quick introduction
Control charts are graphs that display the value of a process variable over time. For 

example, we might measure the moisture content of five items at 8:00 a.m. and plot 
the average on a chart. We would then repeat the process at regular time intervals. In 
addition to a series of points, control charts also include a centerline that represents the 
overall average of the variable being monitored and upper and lower limits known as 
control limits. Figure 1 shows an example control chart for average moisture content. We 
describe how to construct and interpret control charts later in this publication.

Figure 1. Example X-bar control chart for average wood moisture content.

Variability is inherent in all processes. There are two broad categories of variability:
•	 Variability that is inherent to the process 

(also called random or common cause)
•	 Variability that is due to some assignable cause 

(also called special cause)
We discuss these categories in more detail below. For now, know that the pri-

mary objective of control charts is to answer this question: Is the variability within 
the expected range for this process (inherent), or has something changed in the 
process to affect where the process is centered and/or the amount of variability 
(assignable cause)?



3

Points above the upper control limit or below the lower control limit as well as 
trends in the pattern of the points on the chart help us determine when variability 
is within the expected range. In SPC terminology, this is called being in control. 
Although control charts have a foundation in statistics, the primary driver behind 
the invention of these charts was economics. Chasing “false alarms” wastes time and 
resources. When a control chart indicates a process is in control, it’s likely a waste of 
time to go searching for problems. In contrast a control chart that indicates a process 
is out of control indicates we should take action to return stability to the process.

There are two types of control charts: charts for variables and charts for attributes. 
The primary difference between the two is the type of data being collected. Variables 
data are typically measured values such as moisture content, thickness, weight, time, 
and adhesive viscosity. Attributes are usually counts or tallies of some factor such as 
number or the percentage of nonconforming items in a sample. In this publication, we 
focus on variables charts. We will address attributes charts in Part 8.

Anatomy of a control chart
To understand how control charts work, it’s helpful to examine their components. 

As shown in Figure 1, a control chart has points, a centerline, and control limits. To 
effectively monitor a process, we need to track process centering and variability. 
Therefore, we have two control charts: one for centering and another for variability. 
Figure 1 is an example of a chart used to monitor process centering.

Chart for process centering
This chart is known as the X-bar chart and is used to monitor sample averages. The 

individual measurement values are referred to as the x values, and the average of these 
values is referred to as x-bar, shown with the symbol x. The points on the chart are the 
averages of the individual values in each sample group. The centerline is the overall, 
or grand, average and is referred to as x double bar or x bar-bar and shown as x. The 
upper and lower horizontal lines are known as the upper control limit and lower 
control limit, respectively. We discuss these limits in a later example (Calculate con-
trol limits, page 12).

Chart for process variability
This chart is known as either the R chart (if the range is used) or s chart (if the 

standard deviation is used)1. For this discussion, we will focus on the sample range 
(maximum value in the sample minus the minimum value). The points on the chart 
are the ranges of the individual values in each sample group. As with the X-bar chart, 
the centerline on the R chart is the overall average of all sample ranges, shown as R. 
The R chart also has upper and lower control limits.

Don’t worry if you aren’t clear on the details at this point. Later, we will walk 
through an example to show how to construct and interpret X-bar and R charts for 
our XYZ example. But first, we need to review some basic statistics principles because 
the points, centerline, and limits on control charts are derived using statistics.

1  As we discuss below, the choice of chart to use depends on sample size. If the sample size is three to five items, use 
the R chart. If the sample size is variable or has more than 10 items, use the s chart.
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Overview of statistics
When evaluating SPC courses and workshops, participants sometimes comment 

that there is “too much math,” even if we show only one formula. There is some com-
plex arithmetic involved in SPC. However, in this publication series and our related 
workshops, we always aim to focus on the critical information and provide a brief 
review of basic concepts when needed. If you’re interested in learning more about the 
statistics and math involved in SPC, see the resources listed in the “For more informa-
tion” section at the end of this publication. Also, there are many computer programs 
that will handle the math for you. For reference, formulas used in this publication are 
listed on page 18.

For now, let’s focus on key statistics concepts and values: population, sample, 
average, range, and standard deviation. We’ll also review different categories of 
variability (inherent vs. assignable cause) and conclude by discussing the normal dis-
tribution, which is very important in SPC.

Population vs. sample
When we need to estimate the centering and variability of a process, we usually 

take a sample rather than measure every single item in the population.
For example, if we wanted to know the average height of adults in the United States, we 

could measure the height of every single adult (the population) and divide by the number 
of adults. That would give us the population average. But that is not feasible. It would be 
too expensive and take too much time to collect that much data. Instead, we could mea-
sure the height of 100,000 adults from across the United States (a sample), calculate the 
average height of the sample, and use that as an estimate of the population average.

Use common sense when choosing a sample. If you want a reliable, reasonable 
estimate, you need to use samples that represent the range and variety of values found 
in the population. Think about our example of adult average height. If we choose a 
sample of adults only from people who shop in the “big and tall” section of clothing 
stores, our average would probably be skewed.

Average: Measuring process centering
To estimate process centering, we use the average (also called the mean). The aver-

age gives us an indication of the middle of a group of data. To calculate the average, 
simply add the value of each sample and divide by the number of samples (the sample 
size). In statistics, the symbol for sample size is a lowercase letter n. Table 1 shows five 
moisture content readings and the sample average.

Table 1. Sample values and sample average
Measurement Moisture content (%)

X1 8.8

X2 8.0

X3 5.7

X4 6.1

X5 6.8

Sum 35.4

Average (x) (35.4/5) 7.08
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Range and standard deviation: Measuring variability
Because a primary focus of quality control is to minimize and control variability, 

we also need to measure the variation of a sample. The range is a common measure of 
variation. To calculate the range, simply subtract the minimum value from the maxi-
mum value. The range of the sample in Table 1 is 3.1 (X1 – X3, or 8.8 – 5.7 = 3.1).

The range is easy to calculate and understand. Most people who construct a control 
chart by hand with paper, pen, and a calculator use the range. However, the range uses 
only two data points from a sample. If we want a more accurate measure of variation, 
we need to use all the sample data. That’s what the standard deviation does.

The standard deviation is a better measure of variation, but the calculations are 
more complicated. In SPC, we simply use table values to estimate the standard devi-
ation for a given range. But because understanding standard deviation is critically 
important for understanding the control limits on control charts, we provide an exam-
ple to explain this concept further.

The standard deviation answers the question: On average, how far away are the 
values in a sample from their average? Table 2 shows the same data as Table 1 with two 
more columns. The third column shows the average subtracted from each measure-
ment. Notice that the average of these deviations is zero—because they sum to zero. 
That is a key principle of the average; for any set of data, deviations from the average 
will always sum to zero. But a zero value here would indicate zero variation. And we 
can see that’s not the case.

To remove the issue of positive and negative values for the deviations, we square 
the values (the fourth column). The sum of those values is a number in squared units. 
For this example, the units are “percent squared,” which is meaningless. If we divide 
the squared sum of deviations (6.587) by one less than the sample size (n − 1), we get 
what is known in statistics as the sample variance (1.647), again in units of percent 
squared. The last step is to calculate the square root of the variance to get the sample 
standard deviation (1.283).

What does this value mean? In this example, the standard deviation indicates that, 
on average, these measurements are 1.283 percentage points away from their average.

Table 2. Calculation of standard deviation

Measurement
Moisture content 
(%)

Deviation from 
average

Squared deviation 
from average

X1 8.8 8.8 − 7.08 = 1.70 2.904

X2 8.0 8.0 − 7.08 = 0.89 0.799

X3 5.7 5.7 − 7.08= -1.37 1.866

X4 6.1 6.1 − 7.08 = -0.98 0.953

X5 6.8 6.8 − 7.08 = -0.26 0.066

Sum 35.4 0 6.587 

Average (x) 7.08 (average) 0 1.647 (variance)

1.283 
(standard deviation)
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Why divide by n − 1 rather than simply n, as when calculating an average? The 
standard deviation is a good, but not perfect, estimator of the real value of interest: the 
population standard deviation. Statistical theory shows that the standard deviation of 
small samples taken from a population is biased; specifically, it tends to be less than 
the true value. So we inflate the value a bit by dividing by n − 1.

Let’s review:
For this sample of five moisture content readings, the sample average (measure of 

process centering) is 7.08%. The measures of process variability are the sample range 
at 3.1% and the sample standard deviation at about 1.28%.

We have two values to estimate variability; which should we use? Quality con-
trol experts recommend using the range if sample size (n) is small (e.g., three to five 
items), and the standard deviation if sample size varies or is 10 or more. If the sample 
size is six to nine items, you’re free to choose either measure. If you do the calculations 
by hand, range has obvious advantages. If you use a programmable calculator or soft-
ware program, calculating the standard deviation is straightforward.

Categories of variability
Are you still wondering why we need to do all this math for quality control? 

When manufacturers realize that variability of their processes is excessive, perhaps 
via internal rejects or even customer complaints, it is often very time consuming and 
expensive to troubleshoot a process to determine and eliminate the root causes of the 
variability. Troubleshooting often requires shutting down a process. Again, it’s about 
economics and efficient use of resources. If you are going to invest resources in trou-
bleshooting, make sure there really is a problem.

Also remember that the primary objective of control charts is to determine if the 
variability in a process is within the expected range or due to some special circum-
stance, such as a dull cutterhead, incorrect operating procedures, or pockets of high 
moisture content. Using statistics allows us to evaluate the patterns on a control chart 
and determine if the variability is inherent or due to an assignable cause.

Making this determination is important because the approach to troubleshooting is 
different for inherent and assignable-cause variability. We distinguish between the two 
with statistical probabilities. The further away a value is from its average, the less likely 
it is to occur. But how far away is enough to take action? The normal distribution 
helps answer that question.

Normal distribution
Statistical distributions provide a way to link estimates of mean and variability. Part 2 

in this series (How and Why SPC Works) described how to summarize data with a histo-
gram—a bar chart of the frequency of values within specific ranges. Figure 2 shows the 
histogram from Part 2 overlaid with the smooth, bell-shaped curve of the normal distri-
bution. The curve isn’t a perfect fit for the histogram, but it’s reasonably close.
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The normal distribution represents many natural phenomena well—the height 
of adults is a good example. It can even work with processes that are not normally 
distributed. According to statistical theory (specifically, the central limit theorem), 
sample means are approximately normally distributed even when the individual values 
themselves come from a non-normally distributed process (see sidebar, page 8).

A normal curve indicates that observations (measurements) closer to the average 
are more common than those farther away from the average. The width (spread) of the 
curve represents the standard deviation. More precisely, the average plus and minus 
three times the standard deviation accounts for well over 99% of the distribution if the 
data are normally distributed.

Let’s return to our adult height example. If the average height of adults in our 
sample is 5'10" with a standard deviation of 2½", the normal curve that fit these data 
would have the left tail at 5'2½" (5'10" – (3 × 2½")), the peak at 5'10", and the right tail 
at 6'5½". 

Consider what you know about people’s heights. Seeing a person who is within a 
few inches of 5'10" is pretty common. Seeing an adult who is 5'3" is a bit less common, 
but not rare. On the other end, an adult who is 6'5" is not common, but not unusual 
either. The normal curve tells us that we can expect more than 99% of the population 
to fall within plus and minus three standard deviations of the average.

The tails of the distribution do not end; in theory, they go to infinity in both 
directions. Although we know infinity is not possible for height (no one has negative 
height or infinite height), we do know that heights above 6'8" do occasionally occur. 
For example, former professional basketball player Manute Bol is 7'7"—12.4 standard 
deviations above the average!

The normal distribution works the same for height as it does for out-of-spec 
wooden handles. It also serves as the foundation for the control limits on control 
charts. The control limits are the primary means we use to distinguish between inher-
ent and assignable-cause variability.

Let’s return to our XYZ example and put these statistical principles into practice.

Figure 2. Histogram from Part 2 (How and Why SPC Works) with normal curve.
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The top graph in Figure 3 shows a population that is exponentially distributed. This 
looks nothing like the bell-shaped curve of a normal distribution. One example of 
an exponential distribution is human age. There are no negative values and very few 
people who are very old. (The example in Figure 3 shows a simple exponential distri-
bution that varies from zero to four, rather than human ages from zero to 100+.) 

The middle graph shows the distribution of a typical sample of 10 from this popula-
tion. The bottom graph shows the distribution of the average of 200 samples of size 10 
from this population. The population is very non-normally distributed, but the distri-
bution of sample averages from this population is reasonably normally distributed.

Figure 3. Graphs showing an exponentially distributed population (top), typical sample 
(n = 10) from this population (middle), and the distribution of sample averages (bottom).
Source: https://ihstevenson.shinyapps.io/sample_means/
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Example: XYZ Forest Products Inc. uses SPC to 
monitor moisture content

In Part 6, the quality improvement team at XYZ Forest Products Inc. designed an 
experiment and discovered that moisture content as well as an interaction between 
wood species and tooling affected the number of out-of-spec handles. For this exam-
ple, we assume the team chooses to begin by controlling and monitoring moisture 
content so they can machine both poplar and birch at 6% moisture content using the 
new tooling.

Given the natural variability of wood, we know the team will see some variation 
in moisture content. How much variability is acceptable? At what point should the 
team stop the process and look for a problem? A control chart can help answer these 
questions.

Collect data
The first step is to collect data. We also decide how much data to collect, as well 

as where and when to collect it. In SPC, the approach to data collection is known 
as rational subgrouping2. If money and time weren’t an issue, we would just mea-
sure everything. But since money and time are always an issue, we need an efficient 
approach—one that gives the maximum amount of information with the minimum 
amount of effort.

We should use a sampling approach that minimizes the opportunity for variation 
to occur within a sample but provides much greater opportunity for variation between 
samples. To do this, we collect a small sample (3 to 10 items) in rapid succession, in 
the order they were produced, and then wait some amount of time. We then collect 
another sample, and repeat.

When collecting items in rapid succession, there is minimal opportunity for vari-
ation to occur within the sample. If we wait 30 minutes or more to collect the next 
sample, there is a greater likelihood the process will change between samples. Contrast 
this approach to measuring one item at 8:00 a.m., another at 8:30 a.m., and so on until 
we get a sample of five. If the process is prone to fluctuate (most are), that variation 
will occur within the sample, and we will have less ability to detect changes between 
samples. This concept will make more sense when we later discuss how the sample 
range is used to calculate the control limits on control charts.

If we have a stable process, we should expect the variability within groups to be the 
same as the variability between groups. For stable processes, it doesn’t matter if we 
collect five items at 8:00 a.m. or five items over a course of 5 hours. However, we have 
to collect samples in such a way that we can test this assumption.

Because control charts are time-series data, we measure items in the order they 
were produced. As we scan a control chart from left to right, we are watching the 
process through time. People sometimes want to collect data at a more convenient 
location (e.g., the warehouse). Unless there is a way to know for certain the order 
the products were produced (barcoding, perhaps?), collecting data in the warehouse 
doesn’t work for SPC—unless, of course, you happen to be monitoring one of the 
warehouse operations.

2  The terms sample and subgroup are often used interchangeably in SPC.
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To reap the most benefits from SPC, your goal should be to collect and plot data in 
real time in the real environment and then make decisions about the process as soon 
as possible. Think of it this way: If you collect data but don’t plot it until the next day, 
and the charts show an unstable process, how much out-of-spec product was pro-
duced (and how much money was wasted) before you detected the problem?

Let’s return to our XYZ example. The team collects five moisture content readings 
every 20 minutes beginning at 8:00 a.m. Table 3 shows the first 12 samples.

Table 3. Moisture content sample data
Time

Measurement 8:00 8:20 8:40 9:00 9:20 9:40 10:00 10:20 10:40 11:00 11:20 11:40

X1 8.8 6.9 7.0 6.7 6.9 5.1 5.0 7.0 6.8 7.9 7.0 7.0

X2 8.0 7.9 8.0 7.6 7.8 4.7 6.9 4.8 4.9 7.9 7.7 4.8

X3 5.7 5.6 5.8 8.1 8.8 5.0 7.0 5.8 5.8 6.7 6.8 5.8

X4 6.1 5.0 9.0 5.0 7.1 5.1 7.6 5.0 5.0 7.1 7.0 5.0

X5 6.8 4.9 4.7 4.8 8.0 5.3 6.1 6.9 8.0 7.9 8.1 8.2

Analyze data
Average and range

To construct a control chart, we now need to calculate the average (x) and range 
(R) for each sample. We then need to calculate the overall average (x) and overall 
range (R). Table 4 shows those results.

Table 4. Moisture content sample data showing sample averages and ranges and overall 
average and range

Time

Measurement 8:00 8:20 8:40 9:00 9:20 9:40 10:00 10:20 10:40 11:00 11:20 11:40

X1 8.8 6.9 7.0 6.7 6.9 5.1 5.0 7.0 6.8 7.9 7.0 7.0

X2 8.0 7.9 8.0 7.6 7.8 4.7 6.9 4.8 4.9 7.9 7.7 4.8

X3 5.7 5.6 5.8 8.1 8.8 5.0 7.0 5.8 5.8 6.7 6.8 5.8

X4 6.1 5.0 9.0 5.0 7.1 5.1 7.6 5.0 5.0 7.1 7.0 5.0

X5 6.8 4.9 4.7 4.8 8.0 5.3 6.1 6.9 8.0 7.9 8.1 8.2

x 7.08 6.07 6.88 6.44 7.74 5.04 6.51 5.91 6.09 7.48 7.30 6.16 6.56 
(x)

R 3.1 3.0 4.3 3.4 1.9 0.6 2.6 2.1 3.1 1.2 1.3 3.4 2.5 
(R)
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We now have enough information to plot the points on X-bar and R charts and 
draw the centerlines. We still need control limits. These limits are what allow us to 
examine the chart to determine if the is variability inherent, or if there is some assign-
able cause influencing the process. To calculate the limits, we again turn to statistics.

Remember that in the normal distribution, more than 99% of the population data 
will fall within plus and minus three standard deviations of the mean. We use this 
principle to draw control limits on the chart. For the X-bar chart, the upper control 
limit is the centerline (x) plus three standard deviations of the average; the lower con-
trol limit is the centerline minus three standard deviations of the average. The phrase 
of the average is important.

Standard deviation
On the X-bar chart, we are monitoring the averages of samples, not the individual 

measurements. Therefore, our control limits cannot simply be based on our estimate 
of the standard deviation. They must reflect the fact that the variability of the averages 
is different (much less, in fact) than the variability of the individual measurements. 
Figure 4 presents this concept using number lines.

The vertical lines on Figure 4 show the overall variability of the individual measure-
ments from the four samples, which range from 4.7 to 9.0. The bottom row (below the 
solid horizontal line) shows that variability of the averages ranges only from 6.07 to 
7.08. Notice that the variability of the averages is significantly less than the variability 
of the individual measurements.

Figure 4. Variability of individual measurements vs. variability of averages.
Ovals show individual measurements for the first four samples in Table 4 (from 8:00 to 9:00 a.m.).
Triangles show the averages for each of the four samples.
The bottom row (below the solid horizontal line) shows the distribution of the averages.
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Statistical theory allows us to take this one step further. We know that the standard 
deviation of the averages is equal to the standard deviation of the samples divided 
by the square root of the sample size (√n). In this case (samples of 4), the standard 
deviation of the averages is ½ the standard deviation of the individual measurements 
(1/√4). If we had samples of 100, the standard deviation of the averages would be 1/10 
the standard deviation of the individuals (1/√100). This is important because control 
charts are based on three standard deviations of the average.

The final step before calculating control limits is to estimate the standard deviation of 
the process from our samples. Recall that we collected samples, calculated the range for 
each, and calculated the overall range (R). Again, statistical theory tells us how to esti-
mate process standard deviation from the sample range. In fact, the relationship between 
the range of a sample from a normal distribution and the standard deviation of that dis-
tribution is well known. In SPC, this relationship has been simplified to a table value that 
is based on sample size. The table value is known as d2, and it’s available in textbooks3. 
The formula is: standard deviation = R/d2. Table 5 shows a few d2 values.

Table 5. Table values for d2

Sample size d2

2 1.128

3 1.693

4 2.059

5 2.326

6 2.534

3  The Oregon Wood Innovation Center website also provides common table values for SPC: 
http://owic.oregonstate.edu/spc

Calculate control limits
Remember: the estimate of the standard deviation of the averages is the standard 

deviation of the samples (R/d2) divided by the square root of the sample size (√n).
The formula for the upper control limit of the x chart (UCLx) is the overall average 

(x) plus three standard deviations of the average:

The formula for the lower control limit (LCLx) s identical, except the values are 
subtracted rather than added. Notice that only two of the values in this formula come 
from our sampling: x and R. Three of the values are constants: 3, d2, and √n. So we can 
simplify the formulas by using another table value. The value A2 incorporates all con-
stants in the formula and simplifies the equations:
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Now we have control limits for the X-bar chart. Next we need control limits for the 
R chart (UCLR and LCLR). There are table values for calculating these limits as well, 
specifically D3 and D4.

Table 6 lists several table values for calculating the limits on X-bar and R charts. 
For small samples, D3 is 0. Therefore, there is no lower control limit for the R chart 
when the sample size is six or fewer.

Formulas are provided at the end of this publication for calculating control limits 
for X-bar and s charts (control charts that use sample standard deviation instead of 
sample range).

Table 6. Table values for calculating control limits on x and R charts
Sample size A2 D3 D4

2 1.880 0 3.267

3 1.023 0 2.574

4 0.729 0 2.282

5 0.577 0 2.114

6 0.483 0 2.004

Construct control charts
Let’s return to our XYZ example and construct control charts using the data from 

Table 4. These 12 samples provide all necessary information: n = 5, x = 6.56, and R = 2.5.
Use the simplified equations and the A2 table value from Table 6 to calculate upper 

and lower control limits for the X-bar chart:

Next calculate the upper control limit for the R chart (the sample size is five, so 
there is no lower control limit):
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Figure 5 shows completed control charts for the data in Table 4.

Figure 5. X-bar and R control charts for data in Table 4.
Dashed lines between the solid centerline and control limit lines represent one and two standard deviations from 
the centerline. These intermediate lines are not required for control charts but are included here to assist with 
interpretation.

Interpret control charts
Now we need to decide what these charts mean for the XYZ team. Our primary 

interest is the stability and consistency of the process. The question is not whether the 
customer will be satisfied or even if the process is on target (at 6% moisture content).

Determine what type of variability is present
Remember that the primary objective of control charts is to determine if the vari-

ability in a process is within the expected range (inherent) or due to some special 
circumstance (assignable cause). If the charts show evidence of only inherent vari-
ability, we may conclude that the process is in control (stable). If there is evidence that 
assignable-cause variability is present, we conclude that the process is out of control 
(unstable). In SPC, out of control does not mean complete mayhem. It simply means 
the process is unpredictable—we cannot yet predict with any certainty where it is cen-
tered or the magnitude of the variability. If the process is out of control, we need to 
take action to return stability to the process.

What are the indicators of assignable-cause variability? The centerline and upper 
and lower control limit lines are key. Remember that in a normal distribution, more 
than 99% of the data in a normal distribution will fall within plus and minus three 
standard deviations of the mean—exactly where we’ve drawn the upper and lower 
control limit lines on the control charts. If a point falls outside these limits, we con-
clude that (1) we have witnessed a very rare event or (2) the process has changed.

There is a chance of a false alarm. That is, a point could fall outside the limits and 
the process would still be in control. But the odds of that happening are quite slim. 
So as a first-level indicator, a point outside the control limits is a sign that assign-
able-cause variability is present and we should take action. Other indicators of an 
out-of-control process are known as the Western Electric Rules because they were 
developed by the Western Electric Company and published in their Statistical Quality 
Control Handbook (1956). These rules are summarized in Table 7. There are other ver-
sions of these rules as well.
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Table 7. Western Electric Rules for interpreting control charts
Rule Description

1 Any point outside of the control limits

2 Two of three consecutive points in outer one-thirds (beyond two standard deviations)

3 Four of five consecutive points beyond one standard deviation and on same side of centerline

4 Seven consecutive points above or below centerline

5 Five consecutive steps upward or downward

These rules are based on statistical principles. For example, Rule 4 is like flipping 
a coin seven times and getting heads each time; it’s not impossible, but the likelihood 
of this happening is pretty low. The more rules you apply, the higher the chance of 
false alarms. As always, there are trade-offs. For processes that are critical to quality, 
it makes sense to apply all the rules at the expense of a few false alarms. For processes 
that are less critical, perhaps only Rule 1 might be used.

Examine X-bar and R charts
When examining X-bar and R charts, always start with the R chart. Remember 

that limits on the X-bar chart are based on R. If the range isn’t in control (stable), our 
estimate of the range isn’t reliable and, therefore, we can’t be confident that the limits 
on either chart are accurate. Look at the R chart in Figure 5. There are no indications 
that the process is out of control. All points are within the limits, and none of the rules 
listed in Table 7 are violated. Now we can examine the X-bar chart.

The X-bar chart is not in control. Point six is just below the lower control limit. We 
could conclude that the process is stable and we just witnessed a very rare event. If 
that’s the case, we proceed as if things were ok. Alternatively, we could conclude that 
something has changed and explore further to see what the problem might be. In this 
case, we see that Sample 6 is unusual. All of the values are low. Perhaps more import-
ant, the range is suspiciously low. Could this have been a measurement error? Or 
perhaps the same handle was inadvertently measured more than once (which would 
explain the very low range)? Such a situation is cause for exploration to determine the 
root cause.

For this example, we’ll assume that the XYZ team investigated and discovered that 
the meter used at the time of Sample 6 was faulty. Now what? The correct approach 
is to exclude this sample; recalculate x, R, and the control limits; and then determine 
if the charts are in control. The team found that without Sample 6, the process is in 
control.

This is a basic, initial assessment of the process. To be confident that you’ve thor-
oughly assessed the stability of a process, take at least 25 samples. Figure 6 shows the 
control charts for the process after the XYZ team collected 13 more samples. Note that 
Sample 6 was eliminated because of the measurement error. These charts show that 
the process is in control; there are no indications on either chart that assignable-cause 
variability is influencing the process. Therefore, we conclude that the process is in con-
trol at x = 6.49% and R = 2.6.
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Figure 6. X-bar and R control charts for the XYZ example process with 25 samples.

This example described control chart interpretation at a basic level. The patterns on 
control charts can actually reveal much more about a process. With practice and expe-
rience, you will get better at interpreting and using the charts to improve processes. 
For example:

•	 If the R chart indicates the process is out of control because points are above 
the upper control limit but the X-bar chart is in control, this indicates that 
variability has increased. Experience with the process may give you an idea 
of what typically leads to this situation. For part dimensions, this could be an 
indication of dull tooling.

•	 If the R chart indicates the process is in control but data points on the X-bar 
chart are gradually trending downward or outside the lower control limit, this is 
an indication that the process average has decreased. For moisture content, this 
could be a sign that relative humidity in the building has decreased significantly 
(perhaps someone turned on the air conditioning?).

•	 If both charts indicate the process is out of control, there may be several issues 
to explore and address.

Again, experience using control charts combined with knowledge of your processes 
will help you reap the greatest benefits from SPC and guide your continuous improve-
ment efforts.

Next steps: Monitor and take action
Now that the XYZ team has some assurance the process is in control and has reli-

able estimates of centering and variability, they need to monitor it for several more 
days to be sure it remains stable.

The estimates of centering and variability (x = 6.49% and R = 2.6 for this example) 
are critical for monitoring. We use these values to plot control limits on the next series 
of charts. Once we have established control (stability), we have trial control limits 
for the X-bar and R charts. Next, we draw a new control chart using the trial control 
limits and collect another set of 25 samples. If that chart and several more (perhaps 3 
or 4 days’ worth) indicate the process is in control at these limits, we have even greater 
confidence in where the process is centered and the magnitude of the variability.

What if the next control chart does not show the process is in control at these 
values? Then we need to identify and address the problems. We repeat this process 
until the charts indicate an in-control process.

Remember: Establish control first. Then monitor to ensure the process remains 
in control.
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If the example process exhibits control for a period of time, can the XYZ team 
be confident that the size-out-of-spec problem is solved? Unfortunately, it’s not that 
simple. Recall that the team’s goal was to control moisture content at 6%. If the process 
stays in control at 6.5% (as shown in Figure 6), is that OK? And is an average range of 
2.6 acceptable? Control charts can’t help answer these questions. For this, we need to 
do a process capability analysis (PCA)—a technique to compare the variability of an 
in-control process to specifications, expectations, or requirements. We cover PCA in 
Part 9 in this series.

A note about specifications
How should the XYZ team establish these specifications? What level of variability is 

acceptable?
We now know the XYZ team can control moisture content at 6.5% with a range of 

2.6. The d2 table value for samples of five is 2.326. Using these values and the R/d2 for-
mula, we can estimate the process standard deviation:

1.12% = (2.6/2.326)
And given what we know about the normal distribution, we can expect that more 

than 99% of our moisture content readings should fall between about 3% and 10% 
(mean plus and minus three standard deviations):

6.5 ± (3 × 1.12)
So we could conduct another experiment with those moisture content values for 

birch and poplar and measure the number of out-of-spec handles. If the number of 
out-of-spec handles is acceptable, we would recommend that the XYZ team continue 
to monitor the process to ensure it stays at these values (x = 6.49% and R = 2.6).

If, however, the experiment indicates that this target value is too high or that there’s 
too much variability, we would recommend that the XYZ team engage in continuous 
improvement to bring the process on target (6% moisture content), reduce variability, 
or both. Then, they would again use control charts to monitor the process and ensure 
it stays at these new values.

Summary
This publication described variables control charts. These are the most powerful 

SPC tools and provide the most information for troubleshooting and process improve-
ment. But along with this power comes some complexity. The next publication in this 
series will focus on attributes control charts, which are used to control and monitor 
things such as counts or fractions of nonconformities in a sample. Because you now 
have a solid understanding of variables control charts, you will find the discussion of 
attributes control charts to be more straightforward.
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Formulas used in this publication
Average (x):
Add (sum, Σ) all the individual values (Xi) from the first (i = 1) to the last (the sample 
size, n). Then divide by the sample size (n).

Range (R):
Subtract the minimum sample value (Xmin) from the maximum sample value (Xmax).

R = Xmax− Xmin

Sample standard deviation (s):
In some respects, the standard deviation formula is similar to the average. Subtract the 
average from each individual value (to calculate the deviation from average), square 
that value, sum all of the squared deviations, divide by one less than the sample size 
(n − 1), and then take the square root of the result.

Formulas for x charts using the sample range (R): 
Note: A2 is a table value.

Formulas for R charts: 
Note: D3 and D4 are table values.

Formulas for x charts using the sample standard deviation (s): 
Note: A3 is a table value.

Formulas for s charts: 
Note: B3 and B4 are table values.



For more information
The Oregon Wood Innovation Center website provides common table values for SPC: 

http://owic.oregonstate.edu/spc
The listing for this publication in the OSU Extension Catalog also includes a 

supplemental spreadsheet file that includes all data and charts from this publication: 
https://catalog.extension.oregonstate.edu/em9109

Brassard, M., and D. Ritter. 2010. The Memory Jogger II: A Pocket Guide of Tools for 
Continuous Improvement & Effective Planning. Methuen, MA: Goal/QPC. 
http://www.goalqpc.com

Grant, E.L., and R.S. Leavenworth. 1996. Statistical Quality Control (7th edition). New 
York, NY: McGraw-Hill.

Montgomery, D.C. 2012. An Introduction to Statistical Quality Control (7th edition). 
New York, NY: John Wiley & Sons.

Western Electric Company Inc. 1956. Statistical Quality Control Handbook. 
Milwaukee, WI: Quality Press.
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